Algorithms and Uncertainty, Winter 2024/25 Lecture 23 (5 pages)

Basics of Online Convex Optimization, Part 2

Thomas Kesselheim Last Update: January 12, 2025

Recall the basic setting of Online Convex Optimization. We are optimizing over a convex
set S C R? There is an initially unknown sequence of cost functions fi,..., fr: S — R. In
step t, our algorithm chooses a point w¥) € S and only then gets to know f; and incurs cost

ft(W(t)).

We assume that each function f; is convex, that is
fi(a) > fo(v) +(V fi(v), (u —v)) forallu,ve s .
Today, we will analyze the algorithm Follow-the-Regularized-Leader: Choose w(®) so that

t—1
R(w") + > fu(w)

=1
is minimized. We would like to bound its regret

T T
Regret™) = E fe(w®) — min E fr(u) .
u
t=1 t=1

In order to derive bounds, we require the cost functions fi,..., fr as well as the regularizer
R to fulfill several properties beyond convexity.

1 Norms and Lipschitz Conditions

Our first assumption is that the cost functions fi,..., fr have to be bounded. More precisely,
their rate of change has to be bounded. Note that in the experts setting, we also required
0< Kl(t) < p for all ¢ and t; we now generalize this assumption.

We assume that there is a norm ||-|| defined on the set S. This means nothing but that
every point in S has a “length”. Based on this norm, we assume that each function f; fulfills a
Lipschitz condition. We require that for all u,v € S

fi(w) = fi(v) < Llja—v]| .
Example 23.1. Standard examples of norms are the {1, {2, and s norm. Generally, the ¢,
norm is defined by ||v||, = </Z§l:1\vi|p.
We captured the experts setting by S = {v | v; > 0 for all i, 2?:1 v; = 1} and each function

fi(v) = Z?:1 fgt)vi. Consider now the case that fgt) € [0, p] for alli and t.
With the £1 norm, we have

d
[a—= vl = lui =l ,
i=1
and therefore
d
fi(w) = fi(v) = > 67 (wi = v;) < pllu—vllr .
=1

So, if we are considering the ¢1 norm, then we could choose L = p.
To get a bound for the £y norm, we can use that ||v||y < Vd||v|2 for all v.€ R%. So, in this
case, we could choose L = +/dp.

Algorithms and Uncertainty, Winter 2024 /25 Lecture 23 (page 2 of 5)

2 Strongly Convex Regularizers

The second condition concerns the regularizing function R. We assume it to be strongly convex.

Definition 23.2. Let ¢ > 0. A differentiable function F' is o-strongly convex if for all u,v
F(u) > F(v) + (VE(WV),u=v) + 2 u—v|

So, strong convexity requires the function F' to not only stay above its tangent but also
move away from it (see Figure 1 for an illustration).

/(=)

Figure 1: A strongly convex function moves away from the tangent (tangent drawn in red,
distance drawn in blue).

Example 23.3. The function R with R(v) = % S 2 s %—strongly convex with respect to

=1 "1
the lo-norm.
We have to determine the gradient VR, which is the vector of all partial derivatives. We

OR _ 1,
get gy, = 5vi and so

d d
(VR(v),u—v) =3 @f (v)> (i — v5) = 71] S vius — v;)
v i=1

=1

Owerall, this gives us for all u and v

d d

1 1 1
VRV,u—v—i——u—VQZf vilu; —v;) + — ui—viQ
(VRE) =V + g b= VI = 0 3 ot =)+ 2. 3 s =)

1 & 1 &

2 2
= — i —— > v; =R(u) - R(v
2?7;_1 277;:1 (u) — R(v)

This matches exactly the definition of %—strongly convezx.

There is one important observation: If we add a o-strongly convex functions to a sum of
convex functions, then the overall sum is again o-strongly convex.

Observation 23.4. If R is o-strongly convex and fi, fa,... are convex then R+, fi is o-
strongly convexz.

So, if the regularizer is o-strongly convex, Follow-the-Regularized-Leader minimizes a o-
strongly convex function in every step.

Algorithms and Uncertainty, Winter 2024 /25 Lecture 23 (page 3 of 5)

3 Analysis of Follow-the-Regularized-Leader

Having introduced the Lipschitz condition and strong convexity, we are prepared to state the
regret guarantee from Follow-the-Regularized-Leader.

Theorem 23.5. If the regularizer R is o-strongly conver and each f; fulfills the Lipschitz
condition with parameter L, the regret of Follow-the-Regularized-Leader is bounded by
L2
Regret”) < max R(u) — R(wM) + 7= .
ues o
Before we proceed to the proof of this theorem, let us first derive a bound for the experts
setting with Euclidean regularization.

Example 23.6. If we use Fuclidean regularization R(v) = % ;-1:1 viz in the experts setting,
then maxycs R(u) = %, R(wW) > 0. Furthermore, using the fa-norm, we have L = \/dp and
o= % This gives us a regret bound of

! + T(dp?)

2 PN

So, setting n = VT%T;)’ this guarantee becomes v/2dTp. So, this is another no-regret algorithm
for the experts setting.

To prove Theorem 23.5, we can use the bound that we derived last lecture.

T

Regret”) < max R(u) — R(w™") + 3 (fi(w®) = fi(wl1)) .
ues —

Observe that, with this bound, it is enough to show the following lemma.

Lemma 23.7. If the reqularizer is a-stmnglj’g convex and fi fulfills the Lipschitz condition with
parameter L, then fi(w®) — f,(w(tt1) < % for all t.

To prove this lemma, we will need another one, which is the core insight of why we want
our functions to be strongly convex: If so, every point that is far from the minimum also has a
much higher function value.

Lemma 23.8. Let F': S — R be a o-strongly convex differentiable function over S with respect
to a norm ||-||. Let w € argminyeg F(v). Then, for allu e S

F(a) — F(w) > §HU—WH2 :

Proof. Consider any u € S. Note that (VF(w),u — w) is the directional derivative of F' and
w in the direction from w to u. It indicates by how much F' changes when we move from w a
bit towards u and is given by lim,_,q L= W)) Flw),

We assume that w is a (global) mlmmum S0 F(w +e(u—w)) > F(w) for all € € [0,1].
Note that (w + e(u — w)) € S for € € [0,1] because of convexity of S. So, this also means
(VF(w),u—w) > 0.

So, by strong convexity, we have

F(u) = F(w) > (VE(w),u—w) + 2 Ju—wl|? >

Algorithms and Uncertainty, Winter 2024 /25 Lecture 23 (page 4 of 5)

Now, we can finally prove Lemma 23.7 and this way complete our analysis of Follow-the-
Regularized-Leader.

Proof of Lemma 23.7. For allt, let Fy(v) = R(v)+Z§,;11 fv(v). Note that by Observation 23.4,
F, is o-strongly convex. Furthermore, w(®) is exactly a vector that minimizes F;. Therefore, by
Lemma 23.8, we have

Ft(w(t+1)) _ Ft(w(t)) > %Hw(tJrl) _ W(t)H2 .

We can apply the same argument on Fy,1, which is minimized by w(ttD to get
Fria(w®) = B (w) 2 T lw® — w2
By taking the sum of these two inequalities, we get
(Fin(w®) = Fw)) = (Faa (W) = F(w)) > oflwl) — w02 .
So, by the definition of F; and Fy41,
Fiw) = FiwH) = ofjw*) — w02
The Lipschitz condition of f; gives us
ft(W(t)) _ ft(W(tH)) < L||W(t+1) _W(t)” ’

so in combination
wH) — w0 <

and therefore

4 Bound for Entropical Regularization

One of our frequent examples was Entropical regularization R(w) = %Z?:l w;Inw; on S =
{v e R4 | v; >0 for all i, Zle v; = 1}. If the functions f; are linear, this corresponds exactly
to the multiplicative-weights algorithm in the experts setting.

One can show that R is %—strongl‘y convex with respect to the £; norm. In the experts setting,
we would have L = p. As —% < R(w) < 0, Theorem 23.5 gives us a bound of % + Tnp?.

Setting n = % %, this is 2pv/T Ind, which is exactly the guarantee that we derived before.

5 Equivalent Formulations of Follow-the-Regularized-Leader

A potential downside of Follow-the-Regularized-Leader is that it seemingly requires to do a
complicated optimization task in every round, namely to find the best point so far. Quite
surprisingly, this is not as difficult as it sounds. As mentioned before, the case of Entropical
regularization in the experts setting corresponds to the multiplicative-weights algorithm, which
easily derives w(*1) from w(®). This holds in a much more general sense.

Algorithms and Uncertainty, Winter 2024 /25 Lecture 23 (page 5 of 5)

5.1 Euclidean Regularization with Linear Functions

Consider S = R? and linear functions f;. That is, fi(v) = Zf-l:l Egt)vi. Then Euclidean
regularization tells us to choose w(*) so as to minimize

d

t—1 d
SO 6w+ =3 (w)?
t'=1i=1 2n i=1

The partial derivative by w; is
t—1

’ 1
Z fz(t) + —w; .
t'=1 N

®)

i
Therefore, wgt) = —n Zi,_:ll Kl(t) for all i, so wit) = —p Zi,;ll (). Written recursively, this is
w®) = w1 — =" That is, from w1 to w®), we move by nt=1. As ¢(=1 ig the
gradient of f;_1 at any point, this algorithm is also called online gradient descent.

In order for w) to minimize the function, w;’ has to be a zero of this partial derivative.

5.2 Online Mirror Descent

With any regularizers, Follow-the-Regularized-Leader is equivalent to an algorithm called online
mirror descent, which works as follows. It uses vectors 0, ... (1) ¢ R?. Initially 8() = 0. In
step ¢,

e Choose new point w(¥) = g(#")) by “mirroring”
e Update vector 8 by (1) =9 — v f,(w(®)

When setting g(6) = —n#, this is exactly online gradient descent.

