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Recall the basic setting of Online Convex Optimization. We are optimizing over a convex
set S ⊆ Rd. There is an initially unknown sequence of cost functions f1, . . . , fT : S → R. In
step t, our algorithm chooses a point w(t) ∈ S and only then gets to know ft and incurs cost
ft(w

(t)).
We assume that each function ft is convex, that is

ft(u) ≥ ft(v) + ⟨∇ft(v), (u− v)⟩ for all u,v ∈ S .

Today, we will analyze the algorithm Follow-the-Regularized-Leader : Choose w(t) so that

R(w(t)) +

t−1∑
t′=1

ft′(w
(t))

is minimized. We would like to bound its regret

Regret(T ) =
T∑
t=1

ft(w
(t))−min

u∈S

T∑
t=1

ft(u) .

In order to derive bounds, we require the cost functions f1, . . . , fT as well as the regularizer
R to fulfill several properties beyond convexity.

1 Norms and Lipschitz Conditions

Our first assumption is that the cost functions f1, . . . , fT have to be bounded. More precisely,
their rate of change has to be bounded. Note that in the experts setting, we also required

0 ≤ ℓ
(t)
i ≤ ρ for all i and t; we now generalize this assumption.

We assume that there is a norm ∥·∥ defined on the set S. This means nothing but that
every point in S has a “length”. Based on this norm, we assume that each function ft fulfills a
Lipschitz condition. We require that for all u,v ∈ S

ft(u)− ft(v) ≤ L∥u− v∥ .

Example 23.1. Standard examples of norms are the ℓ1, ℓ2, and ℓ∞ norm. Generally, the ℓp

norm is defined by ∥v∥p = p

√∑d
i=1|vi|p.

We captured the experts setting by S = {v | vi ≥ 0 for all i,
∑d

i=1 vi = 1} and each function

ft(v) =
∑d

i=1 ℓ
(t)
i vi. Consider now the case that ℓ

(t)
i ∈ [0, ρ] for all i and t.

With the ℓ1 norm, we have

∥u− v∥1 =
d∑

i=1

|ui − vi| ,

and therefore

ft(u)− ft(v) =
d∑

i=1

ℓ
(t)
i (ui − vi) ≤ ρ∥u− v∥1 .

So, if we are considering the ℓ1 norm, then we could choose L = ρ.
To get a bound for the ℓ2 norm, we can use that ∥v∥1 ≤

√
d∥v∥2 for all v ∈ Rd. So, in this

case, we could choose L =
√
dρ.
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2 Strongly Convex Regularizers

The second condition concerns the regularizing function R. We assume it to be strongly convex.

Definition 23.2. Let σ ≥ 0. A differentiable function F is σ-strongly convex if for all u,v

F (u) ≥ F (v) + ⟨∇F (v),u− v⟩+ σ

2
∥u− v∥2

So, strong convexity requires the function F to not only stay above its tangent but also
move away from it (see Figure 1 for an illustration).

x

f(x)

Figure 1: A strongly convex function moves away from the tangent (tangent drawn in red,
distance drawn in blue).

Example 23.3. The function R with R(v) = 1
2η

∑d
i=1 v

2
i is 1

η -strongly convex with respect to
the ℓ2-norm.

We have to determine the gradient ∇R, which is the vector of all partial derivatives. We
get ∂R

∂vi
= 1

ηvi and so

⟨∇R(v),u− v⟩ =
d∑

i=1

(
∂R

∂vi
(v)

)
(ui − vi) =

1

η

d∑
i=1

vi(ui − vi)

Overall, this gives us for all u and v

⟨∇R(v),u− v⟩+ 1

2η
∥u− v∥22 =

1

η

d∑
i=1

vi(ui − vi) +
1

2η

d∑
i=1

(ui − vi)
2

=
1

2η

d∑
i=1

u2i −
1

2η

d∑
i=1

v2i = R(u)−R(v) .

This matches exactly the definition of 1
η -strongly convex.

There is one important observation: If we add a σ-strongly convex functions to a sum of
convex functions, then the overall sum is again σ-strongly convex.

Observation 23.4. If R is σ-strongly convex and f1, f2, . . . are convex then R +
∑

t ft is σ-
strongly convex.

So, if the regularizer is σ-strongly convex, Follow-the-Regularized-Leader minimizes a σ-
strongly convex function in every step.
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3 Analysis of Follow-the-Regularized-Leader

Having introduced the Lipschitz condition and strong convexity, we are prepared to state the
regret guarantee from Follow-the-Regularized-Leader.

Theorem 23.5. If the regularizer R is σ-strongly convex and each ft fulfills the Lipschitz
condition with parameter L, the regret of Follow-the-Regularized-Leader is bounded by

Regret(T ) ≤ max
u∈S

R(u)−R(w(1)) + T
L2

σ
.

Before we proceed to the proof of this theorem, let us first derive a bound for the experts
setting with Euclidean regularization.

Example 23.6. If we use Euclidean regularization R(v) = 1
2η

∑d
i=1 v

2
i in the experts setting,

then maxu∈S R(u) = 1
2η , R(w(1)) ≥ 0. Furthermore, using the ℓ2-norm, we have L =

√
dρ and

σ = 1
η . This gives us a regret bound of

1

2η
+ T (dρ2)η .

So, setting η = 1√
2dTρ

, this guarantee becomes
√
2dTρ. So, this is another no-regret algorithm

for the experts setting.

To prove Theorem 23.5, we can use the bound that we derived last lecture.

Regret(T ) ≤ max
u∈S

R(u)−R(w(1)) +
T∑
t=1

(ft(w
(t))− ft(w

(t+1))) .

Observe that, with this bound, it is enough to show the following lemma.

Lemma 23.7. If the regularizer is σ-strongly convex and ft fulfills the Lipschitz condition with
parameter L, then ft(w

(t))− ft(w
(t+1)) ≤ L2

σ for all t.

To prove this lemma, we will need another one, which is the core insight of why we want
our functions to be strongly convex: If so, every point that is far from the minimum also has a
much higher function value.

Lemma 23.8. Let F : S → R be a σ-strongly convex differentiable function over S with respect
to a norm ∥·∥. Let w ∈ argminv∈S F (v). Then, for all u ∈ S

F (u)− F (w) ≥ σ

2
∥u−w∥2 .

Proof. Consider any u ∈ S. Note that ⟨∇F (w),u −w⟩ is the directional derivative of F and
w in the direction from w to u. It indicates by how much F changes when we move from w a
bit towards u and is given by limϵ→0

F (w+ϵ(u−w))−F (w)
ϵ .

We assume that w is a (global) minimum, so F (w + ϵ(u − w)) ≥ F (w) for all ϵ ∈ [0, 1].
Note that (w + ϵ(u − w)) ∈ S for ϵ ∈ [0, 1] because of convexity of S. So, this also means
⟨∇F (w),u−w⟩ ≥ 0.

So, by strong convexity, we have

F (u)− F (w) ≥ ⟨∇F (w),u−w⟩+ σ

2
∥u−w∥2 ≥ σ

2
∥u−w∥2 .
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Now, we can finally prove Lemma 23.7 and this way complete our analysis of Follow-the-
Regularized-Leader.

Proof of Lemma 23.7. For all t, let Ft(v) = R(v)+
∑t−1

t′=1 ft′(v). Note that by Observation 23.4,
Ft is σ-strongly convex. Furthermore, w(t) is exactly a vector that minimizes Ft. Therefore, by
Lemma 23.8, we have

Ft(w
(t+1))− Ft(w

(t)) ≥ σ

2
∥w(t+1) −w(t)∥2 .

We can apply the same argument on Ft+1, which is minimized by w(t+1), to get

Ft+1(w
(t))− Ft+1(w

(t+1)) ≥ σ

2
∥w(t) −w(t+1)∥2 .

By taking the sum of these two inequalities, we get(
Ft+1(w

(t))− Ft(w
(t))

)
−
(
Ft+1(w

(t+1))− Ft(w
(t+1))

)
≥ σ∥w(t+1) −w(t)∥2 .

So, by the definition of Ft and Ft+1,

ft(w
(t))− ft(w

(t+1)) ≥ σ∥w(t+1) −w(t)∥2 .

The Lipschitz condition of ft gives us

ft(w
(t))− ft(w

(t+1)) ≤ L∥w(t+1) −w(t)∥ ,

so in combination

∥w(t+1) −w(t)∥ ≤ L

σ
,

and therefore

ft(w
(t))− ft(w

(t+1)) ≤ L2

σ
.

4 Bound for Entropical Regularization

One of our frequent examples was Entropical regularization R(w) = 1
η

∑d
i=1wi lnwi on S =

{v ∈ Rd | vi ≥ 0 for all i,
∑d

i=1 vi = 1}. If the functions ft are linear, this corresponds exactly
to the multiplicative-weights algorithm in the experts setting.

One can show that R is 1
η -strongly convex with respect to the ℓ1 norm. In the experts setting,

we would have L = ρ. As − ln d
η ≤ R(w) ≤ 0, Theorem 23.5 gives us a bound of ln d

η + Tηρ2.

Setting η = 1
ρ

√
ln d
T , this is 2ρ

√
T ln d, which is exactly the guarantee that we derived before.

5 Equivalent Formulations of Follow-the-Regularized-Leader

A potential downside of Follow-the-Regularized-Leader is that it seemingly requires to do a
complicated optimization task in every round, namely to find the best point so far. Quite
surprisingly, this is not as difficult as it sounds. As mentioned before, the case of Entropical
regularization in the experts setting corresponds to the multiplicative-weights algorithm, which
easily derives w(t+1) from w(t). This holds in a much more general sense.
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5.1 Euclidean Regularization with Linear Functions

Consider S = Rd and linear functions ft. That is, ft(v) =
∑d

i=1 ℓ
(t)
i vi. Then Euclidean

regularization tells us to choose w(t) so as to minimize

t−1∑
t′=1

d∑
i=1

ℓ
(t′)
i wi +

1

2η

d∑
i=1

(wi)
2 .

The partial derivative by wi is
t−1∑
t′=1

ℓ
(t′)
i +

1

η
wi .

In order for w(t) to minimize the function, w
(t)
i has to be a zero of this partial derivative.

Therefore, w
(t)
i = −η

∑t−1
t′=1 ℓ

(t′)
i for all i, so w(t) = −η

∑t−1
t′=1 ℓ

(t′). Written recursively, this is
w(t) = w(t−1) − ηℓ(t−1). That is, from w(t−1) to w(t), we move by ηℓ(t−1). As ℓ(t−1) is the
gradient of ft−1 at any point, this algorithm is also called online gradient descent.

5.2 Online Mirror Descent

With any regularizers, Follow-the-Regularized-Leader is equivalent to an algorithm called online
mirror descent, which works as follows. It uses vectors θ(1), . . . , θ(T ) ∈ Rd. Initially θ(1) = 0. In
step t,

• Choose new point w(t) = g(θ(t)) by “mirroring”

• Update vector θ by θ(t+1) = θ(t) −∇ft(w
(t))

When setting g(θ) = −ηθ, this is exactly online gradient descent.


