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Today and also in the following lectures, we will consider online learning against an adversary.
Generally the spirit is similar to the problem that we considered last time. There are a couple
of actions available out of which we have to determine the best one. The difference is that the
rewards or costs are not determined by (unknown) probability distributions but rather by an
adversary.

As a motivating example, consider the following question of binary classification. You ob-
serve a sequence of samples from a data set and you have to classify them as “positive” or
“negative”. You make the choices one after the other, only after each choice you will get to
know the true label for this sample. You can rely on a set of n classifiers that will each tell you
their classification.

1 Majority Algorithm

Let us first consider the setting that one of the n classifiers is perfect and never makes any
mistakes. The difficulty is: You do not know which one it is.

A very simple and natural approach is the following Majority algorithm: Let S be the set
of classifiers that have never been wrong so far. Follow the advice of the majority in S (with
arbitrary tie breaking).

Observation 18.1. If there is a perfect classifier, then the Majority algorithm makes at most
log2 n mistakes.

Proof idea. Every time, the algorithm makes a mistake, at least |S|/2 of the classifiers in S are
wrong. Therefore, in the following step, S will be at most half the size. As 1 ≤ |S| ≤ n in every
step, the claim follows.

2 Weighted Majority Algorithm

Let us now come to the general setting, in which each classifier makes a mistake every once in
awhile. We would like to not make a lot more mistakes than the best among the n classifiers.

Of course, we cannot follow the above Majority rule because the set S will sooner or later be

empty. Instead, we maintain for each classifier a weight wi. Let w
(1)
i = 1. If classifier i is correct

in step t, then w
(t+1)
i = w

(t)
i , otherwise, if it is wrong, reduce it by setting w

(t+1)
i = (1− η)w

(t)
i ,

where 0 < η ≤ 1/2 is a parameter of the algorithm. Our decision in step t is to follow the
weighted majority of classifiers.

Theorem 18.2. Weighted Majority makes at most (2 + 2η)minimi + 2 lnn/η mistakes, where
mi is the number of mistakes that classifier i makes.

Proof. Let W (t) =
∑n

i=1w
(t)
i be the sum of weights in step t. Note that W (t) never increases as

weights are only reduced. By the change of W (t), we can estimate how many mistakes Weighted
Majority makes.

Consider a fixed step t, in which Weighted Majority makes a mistake. Let U ⊆ [n] be the

set of classifiers that are incorrect. Then, by definition
∑

i∈U w
(t)
i ≥

∑
i ̸∈U w

(t)
i , or equivalently∑

i∈U w
(t)
i ≥ 1

2

∑
iw

(t)
i = 1

2W
(t).
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For all i ∈ U , the algorithm updates the weight w
(t+1)
i = (1 − η)w

(t)
i . For i ̸∈ U , we have

w
(t+1)
i = w

(t)
i . Therefore,

W (t+1) =
∑
i∈U

w
(t+1)
i +

∑
i ̸∈U

w
(t+1)
i =

∑
i∈U

(1−η)w
(t)
i +

∑
i ̸∈U

w
(t)
i = W (t)−η

∑
i∈U

w
(t)
i ≤

(
1− η

2

)
W (t) .

Let M be the number of mistakes that the algorithm makes within the first T steps. By this

observation, we have W (T+1) ≤
(
1− η

2

)M
W (1) =

(
1− η

2

)M
n.

Let mi be the number of mistakes that classifier i makes within the first T steps. The

algorithm is defined to set w
(T+1)
i = (1− η)miw

(1)
i = (1− η)mi . Also W (T+1) ≥ w

(T+1)
i .

Combining these two bounds, we get

(1− η)mi ≤ W (T+1) ≤
(
1− η

2

)M
n .

Let us take the logarithm on both sides

mi ln(1− η) ≤ M ln
(
1− η

2

)
+ lnn .

In order to simplify this bound, we will use the following approximation of the logarithm:

−z − z2 ≤ ln(1− z) ≤ −z , (1)

which holds for every z ∈ [0, 12 ].

−z − z2

ln(1− z)

−z

Therefore
mi(−η − η2) ≤ M

(
−η

2

)
+ lnn ,

or equivalently

M ≤ (2 + 2η)mi + 2
lnn

η
.

So, we can hope to make about twice as many errors as the best classifier. Now, we will see
that we can actually do much better by using randomization. We will replace every 2 in this
formula by 1, meaning that asymptotically we only make as many errors as the best classifier.

3 Randomized Weighted Majority and the Experts Setting

The Randomized Weighted Majority algorithm (Littlestone and Warmuth, 1994) maintains

weights w
(t)
i exactly as Weighted Majority, meaning that w

(t+1)
i = w

(t)
i if the classifier was

correct and w
(t+1)
i = (1 − η)w

(t)
i if it was wrong. Instead of using a majority vote, we now

interpret these weights as a probability distributions and choose classifier i with probability

p
(t)
i = w

(t)
i /

∑n
i′=1w

(t)
i′ .

As a matter of fact, this approach immediately works in a more general setting.
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The Experts Setting

Instead of having binary classifiers, we now have arbitrary experts, who give us a piece of advice
for every round. We choose one of these experts and follow her advice. In particular, the advice
could simply be the positive or negative label. Afterwards, we get to know how good each of
these experts performed in this round.

More formally, we will consider a sequence of cost vectors (ℓ
(t)
i )i∈[n],t∈[T ], ℓ

(t)
i ∈ [0, 1] for all i

and t. In step t, we choose an expert It at random, then we get to know ℓ
(t)
1 , . . . , ℓ

(t)
n and incur

costs ℓ
(t)
It
. The classification setting is recovered by setting ℓ

(t)
i = 0 if classifier i is correct in

step t and ℓ
(t)
i = 1 if it is wrong.

The algorithm Multiplicative Weights or Hedge generalizes Randomized Weighted Majority
as follows. Again, η ∈ (0, 12 ] is a parameter of the algorithm to be chosen later.

• Initially, set w
(1)
i = 1, for every i ∈ [n].

• At every time t

– Let W (t) =
∑n

i=1w
(t)
i

– Choose expert i with probability p
(t)
i = w

(t)
i /W (t)

– Set w
(t+1)
i = w

(t)
i · (1− η)ℓ

(t)
i for all experts i

So, in the special case of ℓ
(t)
i ∈ {0, 1}, note that w

(t+1)
i = w

(t)
i if ℓ

(t)
i = 0 and w

(t+1)
i =

w
(t)
i · (1− η) if ℓ

(t)
i = 1 just as in (Randomized) Weighted Majority.

Theorem 18.3. Multiplicative Weights, for any sequence of cost vectors from [0, 1], guarantees
that for all experts i

L
(T )
Alg ≤ (1 + η)L

(T )
i +

lnn

η
,

where L
(T )
i =

∑T
t=1 ℓ

(t)
i is the sum of costs of expert i and L

(T )
Alg =

∑T
t=1

∑n
i=1 p

(t)
i ℓ

(t)
i is the

expected sum of costs of the multiplicative-weights algorithm.

Proof. Let us analyze how the sum of weights W (t) decreases over time. It holds

W (t+1) =
n∑

i=1

w
(t+1)
i =

n∑
i=1

w
(t)
i (1− η)ℓ

(t)
i .

Observe that (1 − η)z = (1 − zη), for both z = 0 and z = 1. Furthermore, z 7→ (1 − η)z is a
convex function in z. For z ∈ [0, 1] this implies (1− η)z ≤ 1− zη.

1

1

1− η
1− ηz

(1− η)z
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This gives us

W (t+1) ≤
n∑

i=1

w
(t)
i (1− ℓ

(t)
i η) = W (t) − η

n∑
i=1

w
(t)
i ℓ

(t)
i .

Let ℓ
(t)
Alg denote the expected cost of the algorithm in step t. The expected cost of the algorithm

ℓ
(t)
Alg is given by ℓ

(t)
Alg =

∑n
i=1 ℓ

(t)
i w

(t)
i /W (t). Substituting this into the bound for W (t+1) gives

W (t+1) ≤ W (t) − ηℓ
(t)
AlgW

(t) = W (t)(1− ηℓ
(t)
Alg) .

As a consequence,

W (T+1) ≤ W (1)
T∏
t=1

(1− ηℓ
(t)
Alg) = n

T∏
t=1

(1− ηℓ
(t)
Alg) .

The sum of weights after step T can be upper bounded in terms of the expected costs of the
algorithm. On the other hand, the sum of weights after step T can be lower bounded in terms
of the costs of the best expert as follows:

W (T+1) ≥ w
(T+1)
i =

(
w

(1)
i

T∏
t=1

(1− η)ℓ
(t)
i

)
=
(
(1− η)

∑T
t=1 ℓ

(t)
i

)
= (1− η)L

(T )
i .

Combining the bounds and taking the logarithm on both sides gives us

L
(T )
i ln(1− η) ≤ (lnn) +

T∑
t=1

ln(1− ηℓ(t)) .

Applying Equation (1), we get

L
(T )
i (−η − η2) ≤ (lnn) +

T∑
t=1

(−ηℓ(t))

= (lnn)− ηL
(T )
Alg .

Finally, solving for L
(T )
Alg gives

L
(T )
Alg ≤ (1 + η)L

(T )
i +

lnn

η
.

Note that setting η =
√

lnn
T yields

L
(T )
Alg ≤ min

i
L
(T )
i + 2

√
T lnn .

We call Regret(T ) = L
(T )
Alg−mini L

(T )
i the (external) regret of the algorithm on the sequence.

An algorithm that guarantees that for any sequence Regret(T ) = o(T ) is called a no-external-
regret algorithm.

Corollary 18.4. The multiplicative weights algorithm with η =
√

lnn
T has external regret at

most 2
√
T lnn = o(T ) and hence is a no-external-regret algorithm.
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4 Extensions

Instead of setting the update to w
(t+1)
i = w

(t)
i · (1 − η)ℓ

(t)
i , it is also common to update the

weights by w
(t+1)
i = w

(t)
i · e−η′ℓ

(t)
i . Indeed, this is the same algorithm using only a different

parameterization, namely setting η = 1− e−η′ ; there is a one-to-one correspondence between η
and η′. Sometimes, the former parameterization is easier to work with, sometimes the latter.


