
Algorithms and Uncertainty, Winter 2024/25 Lecture 16 (4 pages)

Learning for Pandora’s Box
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In our discussion of Markov decision processes, we were assuming that probability distribu-
tions are known beforehand. But why is this a reasonable assumption? Most likely, we can use
observations from the past. But how and why can we use past observations? And how much
knowledge do we need to have? Today, we will discuss these questions considering Pandora’s
Box.

1 Recap: Pandora’s Box (with Known Distributions)

We have n boxes. Box i contains a prize of value vi. We don’t know vi but only its distribution
until we open the box. Opening box i costs ci. The final reward is given as

max
i:box i opened

vi −
∑

i:box i opened

ci ,

where we define the maximum as 0 if no boxes are opened.
We showed that the fair-cap policy is optimal. For box i, let the fair cap σi be defined by

E [max{0, vi − σi}] = ci. (We called max{0, vi − σi} the bonus of box i.) The policy opens the
boxes by decreasing fair cap σi. It stops when the largest observed value vi∗ exceeds the highest
remaining cap and selects i∗.

We let V ∗ denote the expected reward of the optimal policy.

2 Incorrect Costs

Before we come to the problem of learning the optimal policy, we first show a useful lemma. It
helps us understand the following setting: Suppose the true costs are c1, . . . , cn but you run the
policy which would be optimal for costs c′1, . . . , c

′
n. What effect does this have?

Lemma 16.1. Consider a policy π′ that would be optimal if costs were c′1, . . . , c
′
n. If |ci−c′i| ≤ γ

for all boxes i, then the expected reward of π′ with respect to actual costs c1, . . . , cn is at least
V ∗ − 2nγ.

Proof. For any policy π let V (π, c) and V (π, c′) denote the expected rewards when the cost are
c or c′, respectively.

We now have

V (π, c) = E

 max
i:π opens box i

vi −
∑

i:π opens box i

ci


≥ E

 max
i:π opens box i

vi −
∑

i:π opens box i

(c′i + γ)


≥ E

 max
i:π opens box i

vi −
∑

i:π opens box i

c′i

− nγ
= V (π, c′)− nγ
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and analogously V (π, c) ≤ V (π, c′) + nγ.
Let π∗ be the optimal policy for cost c, π′ be the optimal one for costs c′. Then we have

V (π′, c) ≥ V (π′, c′)− nγ ≥ V (π∗, c′)− nγ ≥ V (π∗, c)− 2nγ .

3 Learning from Samples

Let’s formalize our main question for today as follows. For every box i, we are given T samples

v
(1)
i , . . . , v

(T )
i from the prize distribution. Based on these samples, we would like to find a good

policy.
Indeed, there is a very natural way to choose a policy: The T samples define another

probability distribution, called the empirical distribution: Simply draw one of v
(1)
i , . . . , v

(T )
i

uniformly at random. Let σ̃i be the fair cap of box i with respect to the empirical distribution.
That is, σ̃i is chosen such that

1

T

T∑
t=1

max{0, v(t)i − σ̃i} = ci .

Our learned policy now proceeds like the fair-cap policy on σ̃1, . . . , σ̃n. That is, it opens the
boxes by decreasing empirical fair cap σ̃i. It stops when the largest observed value vi∗ exceeds
the highest remaining cap and selects i∗.

In order to analyze the expected reward of this policy, we will assume that the prizes are
upper-bounded by 1; so, vi ∈ [0, 1] with probability 1 for all i. It is straightforward to apply
the result to settings where vi ∈ [0, ρ] with probability 1 for a ρ > 0 by scaling.

Theorem 16.2. Let vi ∈ [0, 1] with probability 1 for all i. For all ε, δ > 0, if T ≥ 2n2 ln(2n/δ)
ε2

,
then the expected reward of the learned policy is at least V ∗ − ε with probability at least 1− δ.

To prove this theorem, we will use two standard inequalities without proofs. The union
bound gives an easy upper bound on the probability of a union of events.

Lemma 16.3 (Union Bound). For any sequence of not necessarily disjoint events E1, E2 . . ., we
have

Pr [E1 ∪ E2 ∪ . . .] ≤ Pr [E1] + Pr [E2] + . . . .

Hoeffding’s inequality is a quantitative version of the law of large numbers. It states that
we get close to the expectation if we take the average of sufficiently many independent draws
from a distribution.

Lemma 16.4 (Hoeffding’s inequality). Let Z1, . . . , ZN be independent random variables such
that ai ≤ Zi ≤ bi with probability 1. Let Z̄ = 1

N

∑N
i=1 Zi be their average. Then for all γ ≥ 0

Pr
[
Z̄ −E

[
Z̄
]
≥ γ

]
≤ exp

(
− 2N2γ2∑N

i=1(bi − ai)2

)
,

Pr
[
Z̄ −E

[
Z̄
]
≤ −γ

]
≤ exp

(
− 2N2γ2∑N

i=1(bi − ai)2

)
,

and

Pr
[
|Z̄ −E

[
Z̄
]
| ≥ γ

]
≤ 2 exp

(
− 2N2γ2∑N

i=1(bi − ai)2

)
.
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As a side remark, note that the second inequality follows by applying the first one on
−Z1, . . . ,−ZN . The third one follows by combining the two using the Union Bound.

4 Learning a Single Fair Cap

We will now prove our key lemma, which is only for a single box. We will show that if T is
large enough then it is very likely that E [max{0, vi − σ̃i}] and ci are close. Note that it is not
immediately clear how to draw such a conclusion from Hoeffding’s inequality because σ̃i is the

solution to the inequality 1
T

∑T
t=1 max{0, v(t)i − σ̃i} = ci.

Lemma 16.5. For every box i, with probability at least 1−2 exp(−Tγ2), the cap σ̃i determined
from the samples fulfills

|E [max{0, vi − σ̃i}]− ci| ≤ γ ,

where the expectation is taken over vi.

Proof. Consider the function f : R≥0 → R≥0, f(x) = E [max{0, vi − x}]. We will show that
with probability at most 2 exp(−Tγ2), we have

f(σ̃i) > ci + γ or f(σ̃i) < ci − γ ,

where σ̃i is a random variable that depends on our samples.
Let’s first bound the probability that f(σ̃i) > ci + γ. The function f is continuous and

non-increasing. Therefore, the event can only take place if f(0) > ci + γ. In this case, there is
an a > 0 such that f(a) = ci + γ and f(σ̃i) > ci + γ is equivalent to σ̃i < a.

Let’s define f̂(x) = 1
T

∑T
t=1 max{0, v(t)i − x}. Also this function is continuous and non-

decreasing. Recall that we choose σ̃i such that f̂(σ̃i) = ci. By monotonicity, if σ̃i < a then
f̂(a) ≤ f̂(σ̃i) = ci.

So, we will bound the probability that f̂(a) ≤ ci. To this end, we use Hoeffding’s inequality.

Let Zt = max{0, v(t)i − a}. Note that 0 ≤ Zt ≤ 1 and that E [Zt] = E
[
max{0, v(t)i − a}

]
=

f(a) = ci + γ. Therefore, Hoeffding’s inequality tells us for f̂(a) = Z̄ = 1
T

∑T
t=1 Zt that

Pr
[
f̂(a) ≤ ci

]
= Pr

[
Z̄ ≤ E

[
Z̄
]
− γ
]
≤ exp(−2Tγ2) .

In combination, we have (even when f(0) ≤ ci + γ)

Pr [f(σ̃i) > ci + γ] ≤ exp(−2Tγ2) .

Analogously, to bound the probability that f(σ̃i) < ci−γ, we distinguish whether limx→∞ f(x) <
ci − γ or not. Only in the former case it can happen that f(σ̃i) < ci − γ. In this case, there is
a b ≥ 0 such that f(b) = ci − γ. Hoeffding’s inequality now gives us

Pr [f(σ̃i) < ci − γ] ≤ Pr
[
f̂(b) ≥ ci

]
≤ exp(−2Tγ2) .

Applying a union bound, we get

Pr [f(σ̃i) > ci + γ or f(σ̃i) < ci − γ] ≤ 2 exp(−2Tγ2) .

This proves the claim.
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5 Putting the Pieces Together

We can now complete the proof of Theorem 16.2. The idea is that the policy computed based
on samples can be understood as an optimal policy with respect to costs that are slightly off.

Proof of Theorem 16.2. Let γ = ε
2n , T ≥ 2n2 ln(2n/δ)

ε2
= ln(2n/δ)

2γ2
. By union bound, we have

Pr [∃i : |E [max{0, vi − σ̃i}]− ci| > γ]

≤
n∑
i=1

Pr [|E [max{0, vi − σ̃i}]− ci| > γ]

≤ n2 exp(−2Tγ2)

≤ δ

So, with probability at least 1− δ, we have for all boxes i

|E [max{0, vi − σ̃i}]− ci| ≤ γ .

Consider any fixed choice of σ̃1, . . . , σ̃n such that this happens. Let c′i = E [max{0, vi − σ̃i}].
We have |c′i − ci| ≤ γ for all i.

Now σ̃1, . . . , σ̃n correspond to an optimal policy with respect to costs c′1, . . . , c
′
n. By Lemma 16.1,

we know that its expected reward is V ∗ − 2nγ = V ∗ − ε.

6 Can we do better?

We have seen that O(n
2 logn
ε2

) samples suffices to get within ε of the optimal policy. This raises
the question if we can do better. Indeed, if one is a little more careful and also uses stronger
concentration bounds, the dependence on n can be made n log n instead of n2 log n.

However, the dependence of ε cannot be improved. The counterexample is surprisingly
simple. Suppose you have only a single box, which always costs c1 = 1

2 to open. There are
two possible distributions: Either v1 = 1 with probability 1

2 + ε and 0 otherwise or v1 = 1 with
probability 1

2 − ε and 0. In case of the former distribution, the optimal policy opens the box; in
case of the latter, it does not. The respective other policy’s reward is ε worse. However, with
o( 1
ε2

) samples, one cannot distinguish the two.
Another question is: What if we get less information, namely we only get samples from

boxes that we opened in the past. This is an question of online learning, where we get a
tradeoff between exploration and exploitation.
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