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Learning for Pandora’s Box

Thomas Kesselheim Last Update: November 27, 2024

In our discussion of Markov decision processes, we were assuming that probability distribu-
tions are known beforehand. But why is this a reasonable assumption? Most likely, we can use
observations from the past. But how and why can we use past observations? And how much
knowledge do we need to have? Today, we will discuss these questions considering Pandora’s
Box.

1 Recap: Pandora’s Box (with Known Distributions)

We have n boxes. Box i contains a prize of value v;. We don’t know v; but only its distribution
until we open the box. Opening box ¢ costs ¢;. The final reward is given as

max V; — E Cc;

i:box i opened . -
i:box i opened

where we define the maximum as 0 if no boxes are opened.

We showed that the fair-cap policy is optimal. For box i, let the fair cap o; be defined by
E [max{0,v; — 0;}] = ¢;. (We called max{0,v; — 0;} the bonus of box i.) The policy opens the
boxes by decreasing fair cap ;. It stops when the largest observed value v;« exceeds the highest
remaining cap and selects ¢*.

We let V* denote the expected reward of the optimal policy.

2 Incorrect Costs

Before we come to the problem of learning the optimal policy, we first show a useful lemma. It
helps us understand the following setting: Suppose the true costs are cy, ..., ¢, but you run the
policy which would be optimal for costs ¢}, ..., c,. What effect does this have?

y b

Lemma 16.1. Consider a policy 7' that would be optimal if costs were ¢y, ..., ch. If |c;—ci] <~
for all boxes i, then the expected reward of ©' with respect to actual costs cy,...,c, is at least
V* —2ny.

Proof. For any policy 7 let V(m, ¢) and V (7, ) denote the expected rewards when the cost are
c or ¢, respectively.
We now have

V(m,c)=E max = v; — g Ci
i:m opens box i . .
i: opens box

>E max  v; — Z (¢ +7)

i:m opens box @ . .
4. opens box @

>E max  v; — Z il —ny

4. opens box @

4.7 opens box @

= V(Wv C/) —ny
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and analogously V(r,c¢) < V(m,c) + ny.
Let * be the optimal policy for cost ¢, ©’ be the optimal one for costs ¢’. Then we have

Vr',e) >V(n',d)—ny>V(n* ) —ny>V(n*c)—2ny .

3 Learning from Samples

Let’s formalize our main question for today as follows. For every box ¢, we are given T" samples

NUNSNC

policy.
Indeed, there is a very natural way to choose a policy: The T samples define another

probability distribution, called the empirical distribution: Simply draw one of 1)1(1), e ,UZ(T)
uniformly at random. Let &; be the fair cap of box ¢ with respect to the empirical distribution.

That is, 6; is chosen such that

from the prize distribution. Based on these samples, we would like to find a good

T

1

T E maX{O,vgt) -0} =q¢ .
t=1

Our learned policy now proceeds like the fair-cap policy on &1,...,d,. That is, it opens the
boxes by decreasing empirical fair cap ;. It stops when the largest observed value v;» exceeds
the highest remaining cap and selects i*.

In order to analyze the expected reward of this policy, we will assume that the prizes are
upper-bounded by 1; so, v; € [0, 1] with probability 1 for all 7. It is straightforward to apply
the result to settings where v; € [0, p| with probability 1 for a p > 0 by scaling.

Theorem 16.2. Let v; € [0,1] with probability 1 for all i. For all €,6 > 0, if T > M,
then the expected reward of the learned policy is at least V* — € with probability at least 1 — §.

To prove this theorem, we will use two standard inequalities without proofs. The union
bound gives an easy upper bound on the probability of a union of events.

Lemma 16.3 (Union Bound). For any sequence of not necessarily disjoint events €1, . . ., we
have
PI'[51U52U...] SPP[51]+PP[52]+

Hoeffding’s inequality is a quantitative version of the law of large numbers. It states that
we get close to the expectation if we take the average of sufficiently many independent draws
from a distribution.

Lemma 16.4 (Hoeffding’s inequality). Let Zy,...,ZN be independent random variables such
that a; < Z; < b; with probability 1. Let Z = % Zfil Z; be their average. Then for all v >0

B _ 2N272
Pr [Z—E [Z] > 'y] < exp (—W) ,

B B 2N2")/2
Pr[Z —E[Z] < —y] <exp <_val(bi _ai)2> ;

and

B B 2N2,Y2
Pr[|Z-E|[Z]| > 7] < 2exp <_val(bi —ai)2>
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As a side remark, note that the second inequality follows by applying the first one on
—Z1,...,—Zn. The third one follows by combining the two using the Union Bound.

4 Learning a Single Fair Cap

We will now prove our key lemma, which is only for a single box. We will show that if T is
large enough then it is very likely that E [max{0,v; — ;}] and ¢; are close. Note that it is not
immediately clear how to draw such a conclusion from Hoeffding’s inequality because &; is the

solution to the inequality + ST max{0, vz-(t) -0} = ¢

Lemma 16.5. For every box i, with probability at least 1 —2exp(—T~?), the cap &; determined
from the samples fulfills
|E [max{0,v; — 6;}] —¢ci| <7,

where the expectation is taken over v;.

Proof. Consider the function f: R>¢g — R, f(z) = E[max{0,v; — z}]. We will show that
with probability at most 2 exp(—17?), we have

f(@i)) >ci+y or f(oy) <ci—7,

where ¢; is a random variable that depends on our samples.

Let’s first bound the probability that f(&;) > ¢; + 7. The function f is continuous and
non-increasing. Therefore, the event can only take place if f(0) > ¢; ++. In this case, there is
an a > 0 such that f(a) = ¢; +7v and f(5;) > ¢; + v is equivalent to ; < a.

Let’s define f(z) = %Zthl max{(),vl(t) — z}. Also this function is continuous and non-
decreasing. Recall that we choose &; such that f (6;) = ¢;. By monotonicity, if &; < a then
fla) < f(5:) = ci. .

So, we will bound the probability that f(a) < ¢;. To this end, we use Hoeffding’s inequality.
Let Z; = max{O,UZ(t) —a}. Note that 0 < Z; < 1 and that E[Z;] = E [max{O,vl(t) —a}| =

A~

f(a) = ¢; +v. Therefore, Hoeffding’s inequality tells us for f(a) = Z = 7 Z;f:l Z; that
Pr [f(a) < cz} =Pr|[Z<E[Z] -4] < exp(—2T+?%) .
In combination, we have (even when f(0) < ¢; +7)
Pr[f(5;) > ¢i + 7] < exp(—2T7?) .

Analogously, to bound the probability that f(5;) < ¢;—~, we distinguish whether lim,_, f(x) <
¢; —« or not. Only in the former case it can happen that f(5;) < ¢; — . In this case, there is
a b > 0 such that f(b) = ¢; — . Hoeffding’s inequality now gives us

Pr[f(6;) <c¢i—v] <Pr [f(b) > cl} < exp(—2T?) .
Applying a union bound, we get
Pr(f(6:) > ci+7 or f(6:) < ci —7] < 2exp(—2T%°) .

This proves the claim. O
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5 Putting the Pieces Together

We can now complete the proof of Theorem 16.2. The idea is that the policy computed based
on samples can be understood as an optimal policy with respect to costs that are slightly off.

(2n/8) _ In(2n/d)
2 272

2n21n
Proof of Theorem 16.2. Let v = &=, T > -

575 . By union bound, we have

Pr [3i : |E [max{0,v; — 6;}] — ¢;| > 7]

n

< ZPI‘ [|E [max{0,v; — &;}] — ci| > 7]
i=1

< n2exp(—277?)

<d

So, with probability at least 1 — §, we have for all boxes ¢
|E [max{0,v; — ;}] —ci| <~ .

Consider any fixed choice of 71, . .., d;, such that this happens. Let ¢, = E [max{0,v; — 6;}].
We have |¢; — ¢;| < for all i.

Now 61, ..., 0y, correspond to an optimal policy with respect to costs ¢}, ..., ). By Lemma 16.1,
we know that its expected reward is V* — 2ny = V* —e. O

6 Can we do better?

We have seen that O(@) samples suffices to get within € of the optimal policy. This raises
the question if we can do better. Indeed, if one is a little more careful and also uses stronger
concentration bounds, the dependence on n can be made nlogn instead of n? log n.

However, the dependence of € cannot be improved. The counterexample is surprisingly
simple. Suppose you have only a single box, which always costs ¢; = % to open. There are
two possible distributions: Either v; = 1 with probability % + € and 0 otherwise or v; = 1 with
probability % — e and 0. In case of the former distribution, the optimal policy opens the box; in
case of the latter, it does not. The respective other policy’s reward is € worse. However, with
0(6%) samples, one cannot distinguish the two.

Another question is: What if we get less information, namely we only get samples from
boxes that we opened in the past. This is an question of online learning, where we get a
tradeoff between exploration and exploitation.
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