Algorithms and Uncertainty, Winter 2024/25 Lecture 14 (5 pages)

Stochastic Two-Stage Set Cover

Thomas Kesselheim Last Update: November 19, 2024

In the analysis of online algorithms, we assumed that we have to make commitments right
away. In practice often restrictions are not as strict. Just suppose you have to fly to New York
City two months from now. You could either buy the ticket now for a cheap price or later on.
Now the ticket is cheap but there is a chance that you actually cannot go on the trip. So, it
might also make sense to wait and buy the ticket for a higher price when it is certain that you
have to go.

This is a typical example of a multi-stage optimization problem. These are problems in
which the optimization instance gets more and more concrete over time and decisions can be
made on the way. There are both models with stochastic as well as adversarial inputs. Today,
we will consider simple examples of such stochastic problems.

1 Stochastic Two-Stage Set Cover

Recall that in the offline Set Cover problem, there is a universe of m elements U and a family
of subsets S C 2V. Each set S € S has a cost cg. We have to select a cover C C S such that for
all e € U there is some S € C with e € S. We want to minimize the cost) ¢ ¢ cs.

In the two-stage version, only a subset A C U has to be covered. That is, only for e € A,
there has to be § € C with e € §. It is uncertain which set A is. We consider the stochastic
variant, in which the set A is drawn from a known probability distribution. We let p4, A C U,
denote the probability that A has to be covered.

Eventually, we will have to cover all of A. We have two opportunities to select sets: Before
A is revealed and afterwards. Before A is revealed (stage I), adding S € S costs ck; after A is
revealed (stage II), it costs ¢ > ck.

Important special cases are as follows. We might have cg = cg for all S. In this case,
choosing sets in the first stage does not make any sense and we might as well wait until the
second stage. If cISI = 00, then we want to cover all elements that can possibly show up already
in the first stage.

We know the distribution (pa)acy and well as both cost vectors (ck)ses and (c)ses in
advance. The goal is to minimize the expected cost

Zcfg—i—E Zc{gl)

SeCy SeCa

where Cy C S denotes the choice in the first stage and C4 C S denotes the choice in the second
stage when A C U is active.

2 Our Goal

Observe that the stochastic set-cover problem can be modeled as a Markov decision process with
time horizon T' = 2. So, we could in principle use the algorithm based on dynamic programming
to compute an optimal policy. However, the number of states will be huge. Computing it is
at least as hard as solving the Set Cover problem optimally because one special case is that
pa = 1 for one set A. Set Cover is an NP-hard problem, so we cannot hope to find an exact

Algorithms and Uncertainty, Winter 2024 /25 Lecture 14 (page 2 of 5)

algorithm that runs in polynomial time. Therefore, we will be interested in approrimating the
optimal policy in polynomial time.

Given any instance Z of the problem, that is the probability distribution over sets of elements
and the different cost vectors, let Cz(7) denote the expected cost of policy 7. There is an optimal
policy 75 such that Cz(7n%) < Cz(rm) for any policy m. Our goal is to design a polynomial time
algorithm with the following property. Given an instance Z, it is supposed to compute a policy
7 such that Cz(m) < a- Cz(n}), where o > 1 is as small as possible.

Note that 77 is not the offline optimum. Indeed, there is not a lot we can do if we are
compared to the offline optimum. Suppose we have only a single element e, which has to be
covered with probability e. Covering it in the first phase costs ¢; in the second phase it costs 1.
Any policy has expected cost € but the offline optimum has expected cost €2.

3 Offline Set Cover and the Greedy Algorithm

Let us first revisit the offline problem. That is, we only have to find a cover C such that all of
U is covered. We have already seen the LP relaxation before:

minimize E CcSxS

SeSs

subject to Z rg > 1 foralle e U
S:ecS
x5 >0 forall Se S

Every solution to the Set Cover problem also corresponds to a feasible solution to the LP
relaxation. However, the best fractional solution can be cheaper but not arbitrarily so. We
have seen before how to round LP solutions to feasible Set Cover solutions. But there is an
even easier approach: Run a simple greedy algorithm. We will show that the cost of its solution
is also bounded in terms of the cheapest LP solution.

The greedy algorithm for offline Set Cover is truly simple. It works as follows

o Initially, set U’ := U
e While U’ # ()
— Let S be the set that minimizes %
— Add StoC,set U :=U"\ S.
So, in every step, the algorithm chooses the set S of minimum cost per newly covered element.

Theorem 14.1. Let C be the cover computed by the greedy algorithm, let z* be the optimal
solution to the LP relaxation. Then) g pocs < O(logm) Y gogcstl, where m = |U|.

For completeness, we will prove Theorem 14.1 later. But before, we use it to derive an
algorithm for the two-stage problem.

4 Algorithm for Stochastic Two-Stage Set Cover

We formulate an LP relaxation as follows. Given an arbitrary policy, let xg = 1 if set S is
selected in the first stage, 0 otherwise. Let y4 5 = 1 if set S is selected in the second stage if

Algorithms and Uncertainty, Winter 2024 /25 Lecture 14 (page 3 of 5)

set A has to be covered, 0 otherwise. Based on these variables, we can write the LP

minimize Z chs + Z pA Z ngA,S

Ses ACU Ses

subject to Z rg + Z yas > 1 foral ACU,ec A
S:e€S S:eeS
z5,ya,s >0 forallSeS, ACU

It is easy to observe that every policy corresponds to an LP solution whose value is the expected
cost of this policy. So, the optimal LP solution can only be cheaper than the optimal policy. If
p4 > 0 only for a small number of sets, we can solve this linear program in polynomial time.
Now, we can proceed to the multi-stage variant. As said before, our algorithm first solves
the LP relaxation and obtains an optimal solution (z*,3*). We turn it into a policy as follows.

o Let Up be the set of all elements e such that) g, .q2% > % Cover these elements in
first stage: Compute Cy by running the greedy algorithm on Uy with costs (cIS) SeS-

e Cover A\ U in the second stage: Compute C4 by running the greedy algorithm on A\ Uy
with costs (c¥)ses.

The policy is clearly feasible because whatever A is drawn, each e € A is covered in the second
stage at the latest.

Theorem 14.2. The algorithm turns any fractional solution to the LP into a feasible policy of
at most O(log m)-times the optimal cost in polynomial time.

Proof. Let us understand the cost of the first stage of our policy. We defined it to cover Uy.
The (deterministic) LP relaxation of this problem is the following.

minimize E cgmg

SES

subject to Z zg >1 for all e € Uy
S:eecS
x5 >0 forall SeS

Observe that 2z* is a feasible solution by the way we defined Uy. So the optimal value is at
most 2 gcg chg This means that, by Theorem 14.1, our first-stage selection has a cost of at

most
Z ck < O(logm) - 2 Z chry .
SeCo SeS
In the second stage, we only have to cover A\ Uy. Observe that for all e € A\ Uy

because (z*,y*) is a feasible LP solution. So, we can follow just the same idea as above and get

a cover of cost at most
11 11
Y g <O(ogm) -2y -
SeCa Ses
In combination, our cover will cost in expectation

Z cs+E Z ol = Z cs—i—ZpA Z cg < O(logm)- (Z chSJerAZCsyAS)

SeCo SeCa SeCo A Secy Ses Ses
]

Algorithms and Uncertainty, Winter 2024 /25 Lecture 14 (page 4 of 5)

5 Analysis of the Greedy Algorithm

It remains to prove Theorem 14.1. To this end, we introduce some more notation. Every
element gets removed from U’ at some point. Let e be the k' element that is removed from
the set U’, breaking ties arbitrarily. Element e; gets removed from U’ because it is covered by
some S for the first time; later more sets covering ey can follow, which we ignore. Let Sj denote
this set S which covers ey, for the first time and let U}, denote the state of U’ at the beginning
of the iteration in which e is removed.

We define
Sy

ISk N UL

as the cost per newly-covered element that we incur when covering element e;. Note that while
covering e;, we may cover elements for the first time as well and we split up the cost of set cg,
evenly among them. By this definition, we can write the cost that our algorithm incurs as

ZCS—Zpk : (1)

Pr =

SeC
Lemma 14.3. For all k, we have
CcsT
i < ZSES SLg
m—k+1
Proof. Recall that S minimizes TSAUT] SmU’ That is, for every S we have
Cs
< —
Pr=T1snu]
Therefore,
ch$§2 Z CS:C*S: Z |SmU/|‘SmUk‘ Z pk|SmUllf|x*52p/€’Ullc‘ :
Ses S:5NU; #0 S:5NU; #0 S:SNU; #0

Here the last step uses that z* is a feasible LP solution, i.e., Y g .qx§ > 1 for all e. So,

Yo ISnUiles= >, > ak=) > ah=|Uil .

S:5NU; #0 S:5NU; #B ecSNU;, ecUj, S:e€S

In combination, we have

P < E Csﬂfs .
U/
‘ SES

The lemma now follows because |U}.| > m —k+1 because before the k™™ element is removed,
there are at least m — k4 1 left. There might be even more because other elements get removed
in the same iteration. O

Proof of Theorem 14.1. Note that Equation (1) together with Lemma 14.3 now implies
25es CSTS « N\ 1 x
S o= 3o e OB 57 s S5 Ot Y
SeC Ses =1 Ses

which is exactly what we claimed. O

Algorithms and Uncertainty, Winter 2024 /25 Lecture 14 (page 5 of 5)

References

e Stochastic optimization is (almost) as easy as deterministic optimization, D. Shmoys, C.
Swamy, FOCS 2004 (Set Cover and generalizations)

