
Algorithms and Uncertainty, Winter 2024/25 Lecture 14 (5 pages)

Stochastic Two-Stage Set Cover

Thomas Kesselheim Last Update: November 19, 2024

In the analysis of online algorithms, we assumed that we have to make commitments right
away. In practice often restrictions are not as strict. Just suppose you have to fly to New York
City two months from now. You could either buy the ticket now for a cheap price or later on.
Now the ticket is cheap but there is a chance that you actually cannot go on the trip. So, it
might also make sense to wait and buy the ticket for a higher price when it is certain that you
have to go.

This is a typical example of a multi-stage optimization problem. These are problems in
which the optimization instance gets more and more concrete over time and decisions can be
made on the way. There are both models with stochastic as well as adversarial inputs. Today,
we will consider simple examples of such stochastic problems.

1 Stochastic Two-Stage Set Cover

Recall that in the offline Set Cover problem, there is a universe of m elements U and a family
of subsets S ⊆ 2U . Each set S ∈ S has a cost cS . We have to select a cover C ⊆ S such that for
all e ∈ U there is some S ∈ C with e ∈ S. We want to minimize the cost

∑
S∈C cS .

In the two-stage version, only a subset A ⊆ U has to be covered. That is, only for e ∈ A,
there has to be S ∈ C with e ∈ S. It is uncertain which set A is. We consider the stochastic
variant, in which the set A is drawn from a known probability distribution. We let pA, A ⊆ U ,
denote the probability that A has to be covered.

Eventually, we will have to cover all of A. We have two opportunities to select sets: Before
A is revealed and afterwards. Before A is revealed (stage I), adding S ∈ S costs cIS ; after A is
revealed (stage II), it costs cIIS ≥ cIS .

Important special cases are as follows. We might have cIS = cIIS for all S. In this case,
choosing sets in the first stage does not make any sense and we might as well wait until the
second stage. If cIIS =∞, then we want to cover all elements that can possibly show up already
in the first stage.

We know the distribution (pA)A⊆U and well as both cost vectors (cIS)S∈S and (cIIS)S∈S in
advance. The goal is to minimize the expected cost

∑
S∈C0

cIS + E

∑
S∈CA

cIIS

 ,

where C0 ⊆ S denotes the choice in the first stage and CA ⊆ S denotes the choice in the second
stage when A ⊆ U is active.

2 Our Goal

Observe that the stochastic set-cover problem can be modeled as a Markov decision process with
time horizon T = 2. So, we could in principle use the algorithm based on dynamic programming
to compute an optimal policy. However, the number of states will be huge. Computing it is
at least as hard as solving the Set Cover problem optimally because one special case is that
pA = 1 for one set A. Set Cover is an NP-hard problem, so we cannot hope to find an exact

Algorithms and Uncertainty, Winter 2024/25 Lecture 14 (page 2 of 5)

algorithm that runs in polynomial time. Therefore, we will be interested in approximating the
optimal policy in polynomial time.

Given any instance I of the problem, that is the probability distribution over sets of elements
and the different cost vectors, let CI(π) denote the expected cost of policy π. There is an optimal
policy π∗I such that CI(π

∗
I) ≤ CI(π) for any policy π. Our goal is to design a polynomial time

algorithm with the following property. Given an instance I, it is supposed to compute a policy
π such that CI(π) ≤ α · CI(π∗I), where α > 1 is as small as possible.

Note that π∗I is not the offline optimum. Indeed, there is not a lot we can do if we are
compared to the offline optimum. Suppose we have only a single element e, which has to be
covered with probability ε. Covering it in the first phase costs ε; in the second phase it costs 1.
Any policy has expected cost ε but the offline optimum has expected cost ε2.

3 Offline Set Cover and the Greedy Algorithm

Let us first revisit the offline problem. That is, we only have to find a cover C such that all of
U is covered. We have already seen the LP relaxation before:

minimize
∑
S∈S

cSxS

subject to
∑

S : e∈S
xS ≥ 1 for all e ∈ U

xS ≥ 0 for all S ∈ S

Every solution to the Set Cover problem also corresponds to a feasible solution to the LP
relaxation. However, the best fractional solution can be cheaper but not arbitrarily so. We
have seen before how to round LP solutions to feasible Set Cover solutions. But there is an
even easier approach: Run a simple greedy algorithm. We will show that the cost of its solution
is also bounded in terms of the cheapest LP solution.

The greedy algorithm for offline Set Cover is truly simple. It works as follows

• Initially, set U ′ := U

• While U ′ 6= ∅

– Let S be the set that minimizes cS
|S∩U ′|

– Add S to C, set U ′ := U ′ \ S.

So, in every step, the algorithm chooses the set S of minimum cost per newly covered element.

Theorem 14.1. Let C be the cover computed by the greedy algorithm, let x∗ be the optimal
solution to the LP relaxation. Then

∑
S∈C cS ≤ O(logm)

∑
S∈S cSx

∗
S, where m = |U |.

For completeness, we will prove Theorem 14.1 later. But before, we use it to derive an
algorithm for the two-stage problem.

4 Algorithm for Stochastic Two-Stage Set Cover

We formulate an LP relaxation as follows. Given an arbitrary policy, let xS = 1 if set S is
selected in the first stage, 0 otherwise. Let yA,S = 1 if set S is selected in the second stage if

Algorithms and Uncertainty, Winter 2024/25 Lecture 14 (page 3 of 5)

set A has to be covered, 0 otherwise. Based on these variables, we can write the LP

minimize
∑
S∈S

cISxS +
∑
A⊆U

pA
∑
S∈S

cIIS yA,S

subject to
∑

S : e∈S
xS +

∑
S : e∈S

yA,S ≥ 1 for all A ⊆ U , e ∈ A

xS , yA,S ≥ 0 for all S ∈ S, A ⊆ U

It is easy to observe that every policy corresponds to an LP solution whose value is the expected
cost of this policy. So, the optimal LP solution can only be cheaper than the optimal policy. If
pA > 0 only for a small number of sets, we can solve this linear program in polynomial time.

Now, we can proceed to the multi-stage variant. As said before, our algorithm first solves
the LP relaxation and obtains an optimal solution (x∗, y∗). We turn it into a policy as follows.

• Let U0 be the set of all elements e such that
∑

S : e∈S x
∗
S ≥

1
2 . Cover these elements in

first stage: Compute C0 by running the greedy algorithm on U0 with costs (cIS)S∈S .

• Cover A\U0 in the second stage: Compute CA by running the greedy algorithm on A\U0

with costs (cIIS)S∈S .

The policy is clearly feasible because whatever A is drawn, each e ∈ A is covered in the second
stage at the latest.

Theorem 14.2. The algorithm turns any fractional solution to the LP into a feasible policy of
at most O(logm)-times the optimal cost in polynomial time.

Proof. Let us understand the cost of the first stage of our policy. We defined it to cover U0.
The (deterministic) LP relaxation of this problem is the following.

minimize
∑
S∈S

cISxS

subject to
∑

S : e∈S
xS ≥ 1 for all e ∈ U0

xS ≥ 0 for all S ∈ S

Observe that 2x∗ is a feasible solution by the way we defined U0. So the optimal value is at
most 2

∑
S∈S c

I
Sx
∗
S . This means that, by Theorem 14.1, our first-stage selection has a cost of at

most ∑
S∈C0

cIS ≤ O(logm) · 2
∑
S∈S

cISx
∗
S .

In the second stage, we only have to cover A \ U0. Observe that for all e ∈ A \ U0∑
S : e∈S

y∗A,S ≥
1

2

because (x∗, y∗) is a feasible LP solution. So, we can follow just the same idea as above and get
a cover of cost at most ∑

S∈CA

cIIS ≤ O(logm) · 2
∑
S∈S

cIIS y
∗
A,S .

In combination, our cover will cost in expectation

∑
S∈C0

cIS+E

∑
S∈CA

cIIS

 =
∑
S∈C0

cIS+
∑
A

pA
∑
S∈CA

cIIS ≤ O(logm)·

(∑
S∈S

cISx
∗
S +

∑
A

pA
∑
S∈S

cIIS y
∗
A,S

)
.

Algorithms and Uncertainty, Winter 2024/25 Lecture 14 (page 4 of 5)

5 Analysis of the Greedy Algorithm

It remains to prove Theorem 14.1. To this end, we introduce some more notation. Every
element gets removed from U ′ at some point. Let ek be the kth element that is removed from
the set U ′, breaking ties arbitrarily. Element ek gets removed from U ′ because it is covered by
some S for the first time; later more sets covering ek can follow, which we ignore. Let Sk denote
this set S which covers ek for the first time and let U ′k denote the state of U ′ at the beginning
of the iteration in which ek is removed.

We define
pk =

cSk

|Sk ∩ U ′k|
as the cost per newly-covered element that we incur when covering element ek. Note that while
covering ek we may cover elements for the first time as well and we split up the cost of set cSk

evenly among them. By this definition, we can write the cost that our algorithm incurs as

∑
S∈C

cS =
m∑
k=1

pk . (1)

Lemma 14.3. For all k, we have

pk ≤
∑

S∈S cSx
∗
S

m− k + 1
.

Proof. Recall that Sk minimizes cS
|S∩U ′

k|
. That is, for every S we have

pk ≤
cS

|S ∩ U ′k|
.

Therefore,∑
S∈S

cSx
∗
S ≥

∑
S:S∩U ′

k 6=∅

cSx
∗
S =

∑
S:S∩U ′

k 6=∅

cS
|S ∩ U ′k|

|S ∩ U ′k|x∗S ≥
∑

S:S∩U ′
k 6=∅

pk|S ∩ U ′k|x∗S ≥ pk|U ′k| .

Here the last step uses that x∗ is a feasible LP solution, i.e.,
∑

S:e∈S x
∗
S ≥ 1 for all e. So,∑

S:S∩U ′
k 6=∅

|S ∩ U ′k|x∗S =
∑

S:S∩U ′
k 6=∅

∑
e∈S∩U ′

k

x∗S =
∑
e∈U ′

k

∑
S:e∈S

x∗S ≥ |U ′k| .

In combination, we have

pk ≤
1

|U ′k|
∑
S∈S

cSx
∗
S .

The lemma now follows because |U ′k| ≥ m−k+1 because before the kth element is removed,
there are at least m−k+ 1 left. There might be even more because other elements get removed
in the same iteration.

Proof of Theorem 14.1. Note that Equation (1) together with Lemma 14.3 now implies

∑
S∈C

cS =

m∑
k=1

pk ≤
m∑
k=1

∑
S∈S cSx

∗
S

m− k + 1
=
∑
S∈S

cSx
∗
S

m∑
k=1

1

k
= O(logm)

∑
S∈S

cSx
∗
S ,

which is exactly what we claimed.

Algorithms and Uncertainty, Winter 2024/25 Lecture 14 (page 5 of 5)

References

• Stochastic optimization is (almost) as easy as deterministic optimization, D. Shmoys, C.
Swamy, FOCS 2004 (Set Cover and generalizations)

