
Algorithms and Uncertainty, Winter 2025/26 Lecture 13 (5 pages)

Adaptivity Gap

Thomas Kesselheim Last Update: November 23, 2025

Today, we will consider a problem which is very similar to Pandora’s box from last time.
The only difference is that opening boxes is free but we may open only a bounded number of
boxes. This will have enormous effects on the structure of the optimal policy.

1 Problem Statement

There are n boxes. Each box contains a prize, which we only get to know when we open it.
Before, we only know the probability distribution the prize is drawn from (which might be
different for different boxes). We are allowed to open k boxes and we will keep the highest prize
that we see in these boxes. The question is which boxes to open in which order. More precisely,
we are allowed to open a box and then, depending on the actual prize in the box, choose which
box to open next and so on.

It is easy to model this problem as a Markov decision process. In the state space, we have
to keep track of which boxes were opened so far and which was the highest prize in these
boxes. Letting X1, . . . , Xn denote the (random) prizes in the boxes and Opened ⊆ {1, . . . , n}
the (possibly random) set of boxes that are opened, the reward is given by

reward = max
i∈Opened

Xi .

In advance, we know the probability distributions of all Xi and we assume that they have
finite support. We write fi,v for Pr [Xi = v].

Example 13.1. We have three boxes; so n = 3. The first box contains a prize of 24 with
probability 1

2 and 0 otherwise. The second box contains a prize of 30 with probability 1
3 and 0

otherwise. The third box contains a prize of 12 with probability 1. We are allowed to open two
boxes, i.e., k = 2.

Let us first consider the policies that in advance fix which boxes to open. The expected
rewards are depicted in the following table.

Boxes opened Expected prize

1, 2 E [max{X1, X2}] = 1
3 · 30 + 2

3 · 1
2 · 24 = 18

1, 3 E [max{X1, X3}] = 1
2 · 24 + 1

2 · 12 = 18

2, 3 E [max{X2, X3}] = 1
3 · 30 + 2

3 · 12 = 18

So the highest expected prize we can achieve using one of these policies is 18. However, we
can do better than this: Open the first box. If it contains a prize, we have 24 for sure. So,
opening the third box does not make any sense at this point and we continue with the second
one. If, however, the first box is empty, we continue with the third box. The expected prize this
way is 1

2(
1
3 · 30 + 2

3 · 24) + 1
2 · 12 = 19.

As we realize in this example, the choice in the second step depends on what we found in the
first box. That is, the optimal policy is adaptive. Adaptive policies are generally complicated:
We need a huge decision tree to represent them. Even if each Xi can only take two values, this
tree has 2k nodes.
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Our question today is: What if one uses a simpler policy instead? How much worse is a
non-adaptive policy, which will simply open a suitably chosen set of boxes and not adapt the
choices based on the values seen?

For this and similar problems, one can quantify the loss by the so-called adaptivity gap,
which is defined as

maxany policy π∗ V (s1, π
∗, T )

maxnon-adaptive policy π V (s1, π, T )
.

So, we compare how much more expected reward an adaptive policy can obtain in comparison
to a non-adaptive policy.

We have already seen that the adaptivity gap in the example is at least 19
18 ≈ 1.056. Our

goal today will be to show that it is at most 8.1 Our proof will be constructive. We will design
an algorithm to compute a non-adaptive policy π and we will show that no policy can obtain
more than 8-times the reward, adaptive or not.

2 An LP Relaxation

As a first step, we will devise a linear program (LP) such that the expected reward of any
(adaptive) policy is upper-bounded by the optimal solution to the LP. In the following step, we
will then construct a non-adaptive policy from the optimal LP solution. The loss that we incur
in this second step is clearly an upper bound to the adaptivity gap.

To derive the LP, fix any policy π and observe its execution. We define random variables Yi
and Zi,v as follows. Let Yi = 1 if box i is opened, 0 otherwise. Let Zi,v = 1 if box i contains a
prize of v and is selected. Based on this, define yi = E [Yi] and zi,v = E [Zi,v]. Note that now yi
denotes the probability that box i is opened and that zi,v is the probability that box i contains
prize v and it is selected (i.e., this is the prize that is kept eventually).

Example 13.2. Consider the adaptive policy from Example 13.1. The first box is always opened,
therefore y1 = 1. The other boxes are opened each with probability 1

2 , so y2 = y3 =
1
2 .

The value of z1,24 is determined as follows. Given that the first box contains prize 24, we
open the second box. With probability 2

3 , it is empty, and we select the 24. So the overall
probability of this happening is z1,24 =

1
2 · 2

3 = 1
3 .

For z3,12, we observe that a prize of 12 from the third box is always selected if this box is
opened. This happens with probability 1

2 . So, z3,12 =
1
2 .

Finally, for z2,30, we use that a prize of 30 from the second box is selected only if this box
is opened and if it contains the respective prize. This happens with probability 1

2 · 1
3 = 1

6 . So,
z2,30 =

1
6 .

We now observe some properties of yi and zi,v.
First, observe that the expected reward of the policy is

V (s1, π, T ) = E

∑
i,v

v · Zi,v

 =
∑
i,v

v ·E [Zi,v] =
∑
i,v

vzi,v (1)

by linearity of expectation.
Furthermore, the policy opens at most k boxes, regardless of the random outcomes. There-

fore,
∑

i Yi ≤ k with probability 1. This inequality still holds if we take the expectation on both

1With more careful analyses better bounds can be obtained. The techniques, however, are similar.
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sides, giving us ∑
i

yi =
∑
i

E [Yi] = E

[∑
i

Yi

]
≤ k . (2)

By definition, eventually only a single prize of one box is selected. Therefore
∑

i,v Zi,v ≤ 1
with probability 1. This gives us

∑
i,v

zi,v =
∑
i,v

E [Zi,v] = E

∑
i,v

Zi,v

 ≤ 1 . (3)

Finally, recall that Zi,v = 1 if and only if Yi = 1, box i contains prize v, and v is the highest
prize in any opened box. Ignoring this last condition, we get

Pr [Zi,v = 1] ≤ Pr [Yi = 1 and box i contains prize v] .

Note that the two events if box i gets opened and if it contains some prize have to be independent.
Therefore

Pr [Yi = 1 and box i contains prize v] = Pr [Yi = 1] ·Pr [box i contains prize v] = fi,vyi .

So
zi,v = E [Zi,v] = Pr [Zi,v = 1] ≤ Pr [Yi = 1 and box i contains prize v] = fi,vyi . (4)

All of the above expressions are linear in yi and zi,v. Therefore, we may also use them as
variables in an LP as follows.

maximize
∑
i,v

v · zi,v (5)

subject to
∑
i

yi ≤ k (6)∑
i,v

zi,v ≤ 1 (7)

zi,v ≤ fi,v · yi for all i, v (8)

zi,v ≥ 0 for all i, v (9)

Lemma 13.3. The expected reward of any adaptive policy is upper-bounded by the value of the
optimal LP solution.

Proof. We observe that every policy corresponds to an LP solution. The objective function (5)
is the expected reward of the policy by (1). It is feasible because (6) is fulfilled due to (2), (7)
due to (3), and (8) due to (4). So the optimal LP solution can only be better than the expected
reward of the optimal policy.

Note that not every feasible LP solution necessarily corresponds to a feasible policy.

Example 13.4. Consider the case of two boxes. The first one contains a prize of 2 with
probability 1

2 and is empty otherwise. The second one contains a prize of 1 with probability 1
2

and is empty otherwise. We are allowed to open two boxes. This means, we do not actually
have a choice to make because we can open all boxes. The expected prize is 1

2 ·2+
1
2 ·

1
2 ·1 = 1.25.

However, it is a feasible LP solution to set y1 = y2 = 1 and z1,2 = z2,1 = 1
2 . The value is

2z1,2 + 1z2,1 = 1.5. The reason is that Constraint (7) only requires us to take not more than
one prize in expectation. The policy described by this LP solution sometimes takes both prizes
and sometimes none. This is not allowed but our LP has no constraint to enforce it.
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3 From LP Solutions to Policies

Despite the fact that not all LP solutions correspond to feasible policies, we can derive feasible
ones from them. Clearly, there has to be a loss in this step. Moreover, the policy that we derive
will be non-adaptive. It will only open a (random) set of boxes.

• Solve the LP, get optimal solution (y∗, z∗)

• For i from 1 to n, as long as less than k have been opened

– Open box i with probability
y∗i
4

• Keep the highest prize

To analyze this policy, we use the following one, which clearly has no larger expected reward.

• Solve the LP, get optimal solution (y∗, z∗)

• For i from 1 to n, as long as less than k have been opened

– Open box i with probability
y∗i
4

– Observe prize v in this box, select it with probability
z∗i,v

fi,v ·y∗i
without looking at further

boxes

So, this policy is even stronger than it would need to be. Immediately after seeing the prize in
a box, it decides whether this is the final prize to keep. Nonetheless, we can show the following.

Theorem 13.5. The immediate-decision policy has expected reward at least 1
8

∑
i,v vz

∗
i,v.

So, as any policy corresponds to a feasible LP solution, this bounds the adaptivity gap by
8.

Proof. Let us again define indicator random variables as follows. We set Yi′ = 1 if box i′ is
opened, 0 otherwise. Furthermore, Zi,v = 1 if box i is opened, contains value v, and is selected
and Zi,v = 0 otherwise. It can happen that the for loop does not reach iteration i. In these
cases Zi,v = 0. Otherwise, for Zi,v, we first have to open the box and then select the prize
inside. Note that reaching iteration i, opening the box, and selecting it are three independent
events: The first one only depends on what happens in iterations 1, . . . , i − 1, the second one
only on the random coin flip if we open the box, and the third one only on the prize inside the
box, which was irrelevant up to this point. Therefore, letting Fi denote the event that the for
loop reaches iteration i, we have

Pr [Zi,v = 1 | Fi] =
y∗i
4

· fi,v ·
z∗i,v

fi,v · y∗i
=

z∗i,v
4

.

We will show that Pr [Fi] ≥ 1
2 . This then implies

E

∑
i,v

vZi,v

 =
∑
i,v

vE [Zi,v] ≥
∑
i,v

v
1

2

z∗i,v
4

=
1

8

∑
i,v

vz∗i,v ,

which proves the claim.
Note that the for loop does not reach iteration i if and only if k boxes are opened in iterations

1, . . . , i−1, i.e.,
∑

i′<i Yi′ ≥ k or one box is selected in iterations 1, . . . , i−1, i.e.,
∑

i′<i,v Zi′,v ≥ 1.
We can bound the probability of one events to happen using the Union Bound.



Algorithms and Uncertainty, Winter 2025/26 Lecture 13 (page 5 of 5)

Lemma 13.6 (Union Bound). For any sequence of not necessarily disjoint events E1, E2 . . ., we
have

Pr [E1 ∪ E2 ∪ . . .] ≤ Pr [E1] +Pr [E2] + . . . .

Using the Union Bound, we get for the complement of Fi

Pr
[
Fi

]
= Pr

∑
i′<i

Yi′ ≥ k or
∑
i′<i,v

Zi′,v ≥ 1

 ≤ Pr

[∑
i′<i

Yi′ ≥ k

]
+Pr

 ∑
i′<i,v

Zi′,v ≥ 1


We will show that both probabilities are upper-bounded by 1

4 using Markov’s inequality.

Lemma 13.7 (Markov’s inequality). For any non-negative random variable X and any α > 0,
we have

Pr [X ≥ α] ≤ E [X]

α
.

The expected number of boxes of 1, . . . , i− 1 that are opened is

E

[∑
i′<i

Yi′

]
≤

∑
i′<i

y∗i′

4
≤ k

4
.

So, by Markov’s inequality, we have

Pr

[∑
i′<i

Yi′ ≥ k

]
≤

E
[∑

i′<i Yi′
]

k
≤ 1

4
.

This shows the first bound.
The expected number of times one of the boxes 1, . . . , i− 1 is selected is

E

 ∑
i′<i,v

Zi′,v

 =
∑
i′<i,v

E
[
Zi′,v

]
≤

∑
i′<i,v

z∗i′,v
4

≤ 1

4
.

Markov’s inequality gives us

Pr

 ∑
i′<i,v

Zi′,v ≥ 1

 ≤
E
[∑

i′<i,v Zi,v

]
1

≤ 1

4
.

This shows the second bound. Overall, we have Pr
[
Fi

]
≤ 1

4 + 1
4 = 1

2 and therefore Pr [Fi] =
1−Pr

[
Fi

]
≥ 1

2 . This completes the proof.


