
Algorithms and Uncertainty, Summer 2021 Lecture 25 (5 pages)

Max-Flow via Experts

Thomas Kesselheim Last Update: July 8, 2021

Today, we will get to know another very surprising application of the experts framework.
We will use it to solve the Maximum-Flow Problem. Our algorithm will be slow but it follows
the same pattern that the fastest known algorithms for this problem use.

1 Max-Flow Problem and Algorithmic Approaches

We are given a graph G = (V,E) with edge capacities (ce)e∈E and a dedicated source node
s ∈ V and sink node t ∈ V . Let P be the set of all paths from s to t. Our goal is to assign
flow values (xP)P∈P to the s-t-paths such that xP ≥ 0 for all P , no edge has more flow than its
capacity, i.e.,

∑
P :e∈P xP ≤ ce for all e ∈ E, and

∑
P∈P xP is maximized.

This problem can also be stated as a linear program as follows.

maximize
∑
P∈P

xP

subject to
∑
P :e∈P

xP ≤ ce for all e ∈ E

xP ≥ 0 for all P ∈ P

Note that an alternate, maybe more common but equivalent formulation asks us to assign
flow values to all edges such that flow conservation is fulfilled.

We will design an algorithm based on the experts framework. It is, indeed, more or less the
same algorithm that was proposed by Garg and Könemann, although they actually do not talk
about regret. The algorithm actually works, just as it is, for multi-commodity flow.

The idea behind the algorithm is simple but maybe not intuitive. Like many other flow
algorithms, we choose shortest paths from s to t and route as much flow along these edges as
possible. The Edmonds-Karp algorithm chooses a path that minimizes the number of edges and
then changes the network to a residual network.

Our algorithm is different: We define lengths of each edge via the experts setting as follows.
Let each edge correspond to one expert. The experts algorithm puts some probability mass
on each edge. Based on this probabilities, the length of each edge is just the probability mass
divided by the capacity of this edge. In the ongoing process, we adapt the lengths with respect
to the changes in probability that the experts algorithm tells us to do. In each round, our
algorithm computes a shortest path with respect to the edge lengths and increases the flow
along this path.

2 Recap: No-Regret Learning

Let us quickly recap the framework of no-regret learning. We rephrase it slightly to better fit
our needs for today. There are m actions (experts) we can choose from in every step. There
is a sequence of initially unknown gain vectors g(1), . . . , g(T). Choosing action i in step t gives

gain g
(t)
i ∈ [0, 1]. In step t, the algorithm first chooses a probability vector y(t), then it incurs

gain g
(t)
Alg =

∑m
i=1 y

(t)
i g

(t)
i and gets to know the entire vector g(t). To avoid any confusion with

the paths, we call the probability vector y(t) today.

Algorithms and Uncertainty, Summer 2021 Lecture 25 (page 2 of 5)

The regret of the algorithm is defined as

Regret(T) = G(T)
max −G

(T)
Alg ,

where G
(T)
max = maxi

∑T
t=1 g

(t)
i and G

(T)
Alg =

∑T
t=1 g

(t)
Alg =

∑T
t=1

∑m
i=1 y

(t)
i g

(t)
i .

The Multiplicative Weights algorithm guarantees

G
(T)
Alg ≥ (1− η)G(T)

max −
lnm

η
.

So, Regret(T) ≤ ηG(T)
max + lnm

η .

3 Flows and Edge Lengths

In order to define our algorithm, we need to consider the dual of our flow problem. The dual of
the flow LP is as follows.

minimize
∑
e∈E

ceze

subject to
∑
e∈P

ze ≥ 1 for all P ∈ P

ze ≥ 0 for all e ∈ E

So, we have a dual variable for each edge, which has to be non-negative. Therefore, we can
interpret the dual problem as finding lengths for all edges. Weak duality then tells us an upper
bound on the objective function. For our algorithm, we will need exactly this bound. However,
we need an unusual formulation. This is why we reprove it from scratch.

Lemma 25.1. If there is a flow of value F ∗, then for all choices of edge lengths (ze)e∈E with∑
e∈E ceze = F ∗ there is a path P such that

∑
e∈P ze ≤ 1.

Proof. Let x be the flow of value F ∗. As it is a feasible LP solution, we have∑
P :e∈P

1

ce
xP ≤ 1 for all e ∈ E .

This also implies ∑
e∈E

ceze
∑
P :e∈P

1

ce
xP ≤

∑
e∈E

ceze = F ∗ .

We can also reorder the left-hand side to∑
e∈E

ceze
∑
P :e∈P

1

ce
xP =

∑
P∈P

(∑
e∈P

ze

)
xP .

Now suppose that
∑

e∈P ze > 1 for all paths P . Then this immediately implies that also

∑
P∈P

xP <
∑
P∈P

(∑
e∈P

ze

)
xP ≤ F ∗ .

So, this would be a contradiction to x being a flow of value F ∗.

Algorithms and Uncertainty, Summer 2021 Lecture 25 (page 3 of 5)

By a simple change of variables, namely replacing ze by ye
ce
F ∗, we obtain the following

corollary.

Corollary 25.2. If there is a flow of value F ∗, then for all choices of edge weights (ye)e∈E with∑
e∈E ye = 1 there is a path P such that

∑
e∈P

ye
ce
≤ 1

F ∗ .

Observe that in Corollary 25.2 the constraint on (ye)e∈E is exactly the kind of output we
will be getting from an experts algorithm if each edge is an expert. We interpreted this as
probability distributions before but we can also think of it as splitting up the budget of edge
lengths according to Lemma 25.1.

4 The Algorithm

Our algorithm uses Corollary 25.2 as follows. An experts algorithm chooses (ye)e∈E with∑
e∈E ye = 1. By this choice of edge weights, the experts algorithm tries to “convince” us

that there is no flow of value F ∗. We then compute the shortest path with respect to edge
lengths ye

ce
. By Corollary 25.2, if there is a flow of value F ∗, this path will be of length at most

1
F ∗ . The expert algorithm’s gain is the length of the path that we found and used. Then, the
experts algorithm updates the edge weights based on which path we chose.

Formally, the algorithm is defined as follows.

• For t = 1, . . . , T

– Get probability distribution y(t) from the experts algorithm.

– Compute P (t) as the shortest path with edge lengths y
(t)
e
ce

– Let c(t) = mine∈P (t) ce

– Let (x
(t)
P)P∈P be a vector such that x

(t)

P (t) = c(t) and x
(t)
P = 0 for P 6= P (t).

– Return g(t) back to the experts algorithm, where

g(t)e =

{
c(t)

ce
if e ∈ P (t)

0 otherwise

• Compute x̄ =
∑T

t=1 x
(t), G

(T)
max = maxe∈E

∑T
t=1 g

(t)
e

• Return x = 1

G
(T)
max

x̄

Lemma 25.3. The algorithm computes a feasible flow x.

Proof. Note that for every edge e ∈ E

T∑
t=1

g(t)e =
∑

t:e∈P (t)

c(t)

ce
=

1

ce

∑
t:e∈P (t)

c(t) =
1

ce

T∑
t=1

∑
P :e∈P

x
(t)
P =

1

ce

∑
P :e∈P

x̄P .

This also means

G(T)
max = max

e∈E

1

ce

∑
P :e∈P

x̄P .

So G
(T)
max is exactly the maximum factor by which x̄ exceeds an edge capacity. Therefore, it is

clear that the flow x is feasible.

Algorithms and Uncertainty, Summer 2021 Lecture 25 (page 4 of 5)

5 Approximation Guarantee

Interestingly, using any no-regret algorithm, this algorithm always computes a 1−ε-approximate
flow if the number of iterations, T , is chosen large enough.

Lemma 25.4. The flow x has value at least F ∗(1 − 1

G
(T)
max

Regret(T)), where F ∗ is the value of

an optimal flow.

Proof. First, we will argue that the expert algorithm’s gain cannot be high because we always
choose the shortest path with respect to the current weights. This lets us upper-bound the
algorithm’s gain in terms of the flow that we compute. Afterwards, we use the no-regret
property of the experts algorithm, which gives us a lower bound on its gain.

Consider any step t. The expert algorithm’s gain in this step is given by

g
(t)
Alg =

∑
e∈E

y(t)e g(t)e =
∑
e∈P (t)

y(t)e
c(t)

ce
= c(t)

∑
e∈P (t)

y
(t)
e

ce
.

Recall that P (t) was is a shortest path with respect to edge lengths

(
y
(t)
e
ce

)
e∈E

. So, by Corol-

lary 25.2, ∑
e∈P (t)

y
(t)
e

ce
≤ 1

F ∗
,

meaning that g
(t)
Alg ≤

c(t)

F ∗ . Using that

T∑
t=1

c(t) =
∑
P∈P

x̄P ,

we observe that

G
(T)
Alg =

T∑
t=1

g
(t)
Alg ≤

1

F ∗

∑
P∈P

x̄P =
G

(T)
max

F ∗

∑
P∈P

xP .

Recall that Regret(T) = G
(T)
max −G(T)

Alg. So, this gives us

G
(T)
max

F ∗

∑
P∈P

xP ≥ G(T)
max − Regret(T)

and so ∑
P∈P

xP ≥ F ∗
(

1− Regret(T)

G
(T)
max

)
.

Note that this bound only is meaningful if G
(T)
max is large. Fortunately, this is true in our

case.

Lemma 25.5. The gain vectors g(1), . . . , g(T) generated by the algorithm fulfill

G(T)
max ≥

T

m
.

Algorithms and Uncertainty, Summer 2021 Lecture 25 (page 5 of 5)

Proof. Observe that in each step t there is an edge e such that g
(t)
e = 1, therefore

G(T)
max = max

e∈E

T∑
t=1

g(t)e ≥
1

m

∑
e∈E

T∑
t=1

g(t)e ≥
T

m
.

If we combine these lemmas, then as long as we use a no-regret algorithm, that is, Regret(T) =
o(T), then the flow value approaches F ∗ asymptotically for larger and larger T .

6 Guarantee with Multiplicative Weights

Let us now derive a quantitative bound if we use Multiplicative Weights. It actually pays off to
be a little careful and to not just use the O(

√
T logm) regret guarantee. Recall that the regret

guarantee in case of m experts is

Regret(T) ≤ ηG(T)
max +

lnm

η
,

so the above guarantee becomes

∑
P∈P

xP ≥ F ∗
(

1− η − 1

G
(T)
max

lnm

η

)
≥ F ∗

(
1− η − m

T

lnm

η

)
.

If we choose η = ε
2 and T = 4

ε2
m lnm, then

∑
P∈P xP ≥ F ∗(1− ε).

Theorem 25.6. With Multiplicative Weights, the algorithm computes a (1 − ε)-approximate
flow using 4

ε2
m lnm shortest-path computations. Its overall running time is O(1

ε2
m2 lnm).

7 What is really happening?

One may wonder: Why does this work? As often, the answer is simple and complicated at the
same time: It is because of strong LP duality. Lemma 25.1 is indeed not only necessary but also
sufficient for the existence of a flow of value F ∗. Our algorithm can be seen as a constructive
proof of strong duality. It tries to find a solution to the primal and the dual LP by iteratively
adapting the primal and dual solution in a way similar to the algorithm for online set cover
that we saw earlier.

The pair of a primal and a dual solution can be understood as an equilibrium of a game.
This is what we will talk about next time.

References

• Naveen Garg, Jochen Könemann: Faster and Simpler Algorithms for Multicommodity
Flow and Other Fractional Packing Problems. FOCS 1998

• Sanjeev Arora, Elad Hazan, Satyen Kale: The Multiplicative Weights Update Method: a
Meta-Algorithm and Applications. Theory of Computing 8(1): 121-164 (2012): Survey
on Multiplicative Weights Technique including this algorithm and others

