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1 Last Lectures

In the last lecture, we turned the Multiplicative Weights algorithm from the lecture before into
one that works with bandit feedback.

We can choose from n actions in every step. An adversary determines the sequence of cost
vectors () ... ¢(T) in advance, KZ(-t) € [0,1]. The sequence is unknown to the algorithm. In step

t, the algorithm chooses one of the n actions at random by defining probabilities pgt), . pgf).

The algorithm’s choice in step t is denoted by I;. The algorithm gets to know Kg). The other
entries of the cost vector remain unknown.

We used the Multiplicative Weights algorithm in a way that we could reuse the regret bound
by computing “fake costs” ggt)
parameters.

. The final algorithm then looks as follows, using -, n, and p as

(1)

e Initially, set w;”’ =1, pgl) =L for every i € [n].

e At every time t

Define qgt) =(1- fy)pl(-t) + 1.
Choose I, based on ¢®.
Define gg) = Z%)/qg) and lz(»t) =0 for i # I

— Multiplicative-Weights Update:

* Set wgt“) = wgt) - exp (—n%ggt))
* W(t+1) — Z’V}_l w(t+1)
« pz(t+1) _ wl(t+1)/W(t+1)

We set v = {/ ”1%‘”, n=In(1-~)and p = % to get a regret bound of 3(nInn)/372/3, Note
~ 1 5(t)
that we use the weight update wEtH) = wgt) -exp (—17%(1@) instead of wEtH) = wgt) (1 —77)54' ,

which is only a different parameterization.

2 The Exp3 Algorithm

There is a way to improve the regret guarantee to O(y/nT logn), which we will get to know
today. The algorithm is called Exp3, which stands for “Explore and Exploit with Exponential
Weights”. And, in fact, we already know the algorithm. It is exactly the one listed above but
with a smarter choice of parameters and a more careful analysis.

Our original analysis of the multiplicative-weights update could only deal with cost vectors
n

such that 0 < lz(t) < p. Now, a single entry ggt) can be as large as . This is why we chose
p = % Exp3 instead sets p = 1. This means, the update step is much more aggressive than

with our previous parameter choice.
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The idea to keep in mind why this is reasonable is that ggt) = 0 most of the time. The fake
cost is only non-zero if this is the action that has just been chosen. In particular, we have

(1) 0l o
B[] =d" 5 =0 <1
4q;

i 0\? (@)
E [(&@ﬂ =q" (5“) = ( (t? < (1t) .

These are much stronger bounds that what is implied when only taking into consideration that

but also

gl(-t) < % The other parameters, v and 7, will be determined later.

3 A Refined Bound of the Multiplicative-Weights Update

The key to prove the regret guarantee of Exp3 is a more careful analysis of the multiplicative-

(1)

weights update, now allowing ¢;” > 1 despite setting p = 1. We can show the following bound.

Lemma 21.1. Fiz (W ... 1) arbitrarily such that 0 < ggt) < % for all i and t. Then the
vectors p, ... p) computed by the multiplicative-weights update (with p = 1) fulfill

ZZp(t)K nZZp(t) < (t)> < mmZﬁ lnn

t=1 i=1 t=1 i=1

Proof. We prove this bound in a very similar way to our orlglnal analysis of the multiplicative
weights algorithm. We again use the sum of the weights W® to (a) lower-bound any expert’s
cost as well as to (b) upper-bound the algorithm’s cost. Combining these two bounds then lets
us compare the algorithm’s cost to any experts costs.

For part (a), that is the lower bound, we use that for all experts i

w(T+1) > wZ(T‘H = exp ( Z%ﬂ)

Taking the logarithm, this is equivalent to

T
In W+ > _p miinzgl(t) . (1)
t=1
For part (b), that is the upper bound, we consider the weight changes in step t. We have
W) _ Z”: el
i=1
We use that e* <1+ z + 22 for =1 < z < 1.

142+ 22

exp(2)
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~ - - 2 -
So, we have e < 1—nil" + (") because 0 < 5l < 1. Furthermore, note that we

can write wl(t) = W(t)pgt) to get

Wit < zn:wzgt) <1 _ nggt) 4 (nlzgt)y)

=1

= Zn:wz(t) _ zn:wlgt)nggt) 4 Zn: wZ(t) (nggt)>2
i=1 i=1 i=1
w0 (1S Sl (1))
i=1 i=1

Repeatedly applying this bound and using that W) = n, we get

Wi <n ﬁ( 3O g2yl (@'E”)2>
t=1 =1

Again, we take the logarithm to get
T n _ n _ 9
W) < Inp + Z In (1 —n Zpﬁ”f?) . sz(t) (gEt)) )
t=1 i=1 i=1
We use that In(1 + z) < z for all z € R (where defined) to simplify this expression to
T n ~ T n _ 9
W™ <t -0 S o000 4026 (87) (2)
t=1 i=1 t=1 i=1
Combining the two bounds on In W(T*1  that is, (1) and (2), we get

—nmanf <11171—77Z:Z:PZ e(t)"”fzzpz (z) ’

t=1 i=1 t=1 i=1

which is equivalent to the claim. O

4 Analysis of Exp3

Based on Lemma 21.1, the remaining analysis of Exp3 works almost the same way as the one
for the basic algorithm.

Theorem 21.2. Ifn < I, Ezp3 has expected cost at most
L @t , Inn
. ¢
mZmZEZ- +7+nnT+’yT .

Proof. Once again, we first fix Iy, ..., Iy arbitrarily. This also fixes (), ... /(7)) which are fed
into the multiplicative-weights part and this way p™®), ..., pT) are fixed as well. So, we can
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invoke Lemma 21.1. Replacing q(t) =(1-7) gt) + I, we have

7

T n T n
() 5(t) _ (ONINAWI0]
E § q 4 = E E ((1 —Y)p; + ;) 4

t=1 i=1 t=1 i=1
SN 070 T NN 700
1 ) 5(t
t=1 i=1 t=1 i=1
T ~ Inn n ~ 9 5 n_o
<1 (3 S (1)) S
t=1 N t=1 i=1 (gt
Inn CAL
<m1nZ€ —f-i—l-T]ZZqz (EZ ) +ZZ Zt)
t=1 i=1 n t=1 i=1
Next, we consider how the values lz(»t) are derived from the th). To this end, keep I1,...,[;_1

fixed. Like in the analysis of our black-box transformation, we have
g
q(t)

)

E[th)‘fl,...,ft_l} —Pr(l,=i|L,... . Ii] -t +Pr[f £i]-0=0"

So, also
n

o] - e 0] - 3o ] 0 - 4]

Now, we also have quadratic terms. For these, we can derive

)2

A0\ e (W)

E|(07) | B B | =Prili=i] - | 5 | +PriliAi]-0= g
q; q;

This gives us for any choice of I,...,[;_1

B () t (th)>2 A\ 2
E[qg)(@()) ‘Ila'--alt1:|:q7?) :(g“) .
q
As the right-hand side is independent of Iy, . .., I;—1, this identity also holds for the unconditional

expectation
i ()] - ()

Taking the expectation over the bound from the multiplicative weights part, we get

T T
Z Eg) min Z Egt)
=1 -

Inserting the above identities, this implies

n

S Sl ()] < 1 ys ]

t=1 i=1 t=1 =1

<E

n n

T T T
E Zzﬁ)] <miny " +ln—”+n G ) I3
t=1 t=1

t=1 =1 t=1 =1
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Finally, we use that oW < 1 for all 7 and ¢. This lets us bound the double sums by nT'. (This

i
is not too wasteful because they are multiplied by n or 1, which are small.) Therefore

E

T T
. Inn
Zﬂg)] < milnz Egt) + — 4+ T +~T . O
t=1 t=1 N
Corollary 21.3. Setting n = 17?—773, v = nn, the external regret of Fxp3 is at most 3vnT Inn.
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