
Algorithms and Uncertainty, Summer 2021 Lecture 11 (5 pages)

Online Steiner Tree in Probabilistic Models

Thomas Kesselheim Last Update: May 12, 2021

Today, we will come back to the Online Steiner Tree problem. We have already seen what
results one can obtain in the all-worst-case competitive analysis. But what if we are less pes-
simistic? We will consider the two approaches we already used for optimal stopping: First, we
will ask what we can do when we know in advance the probability distributions the input is
drawn from. Then, we will instead consider the setting in which we know nothing in advance
but the input is revealed in random order.

1 Recap: Online Steiner Tree

Recall the Online Steiner Tree problem. We are given a connected graph G = (V,E), edge
weights we ≥ 0 for e ∈ E, a root r ∈ V . A sequence of terminals t1, . . . , tk ∈ V is revealed to us
one at a time. We maintain a set S ⊆ E of edges. Whenever a terminal gets revealed, we have
to connect it to the previous terminals or the root. That is, when we see ti for the first time,
we immediately and irrevocably add edges to S so as to connect ti to one of r, . . . , ti−1.

Without loss of generality, we can assume that G = (V,E) is a complete graph. We can also
assume that the weights we fulfill the triangle inequality. That is, w{u,v} ≤ w{u,x} + w{x,v} for
all u, v, x ∈ V . This is without loss of generality because instead of taking an edge {u, v} we
could take all edges on a shortest path between u and v.

We will again use that Steiner trees can be approximated by minimum spanning trees. Such
a spanning tree only uses edges between the nodes in the set {r} ∪ T and no edges to other
vertices (called Steiner vertices). Let MST(T ) ⊆ E be the minimum spanning tree on G|{r}∪T
and let Steiner(T ) ⊆ E be the optimal Steiner tree connecting {r}∪T . Also today we will again
make use of the following lemma.

Lemma 11.1. A minimum spanning tree on G|{r}∪T is a 2-approximation for the min-cost
Steiner tree on {r} ∪ T , formally

w(MST(T )) ≤ 2 · w(Steiner(T ))

We showed that the greedy algorithm is strictly O(log k)-competitive. That is, on any
sequence σ of (at most) k terminals, we have

c(ALG(σ)) ≤ O(log k) · c(OPT(σ)) ,

where c(ALG(σ)) is the cost that the algorithm incurs and c(OPT(σ)) is the optimal offline
solution.

Today, our benchmark will also be the optimal offline solution, although it might be random.

2 Known Distributions

In our first probabilistic model, we assume that t1, . . . , tk are random variables. They are drawn
independently from probability distribution, which are known by the algorithm in advance. That

is, for step i, we have a vector of probabilities (p
(i)
v )v∈V , where p

(t)
v denotes the probability that

v arrives as a terminal in any step. We also assume that k is known.



Algorithms and Uncertainty, Summer 2021 Lecture 11 (page 2 of 5)

In principle, you could model this setting as a Markov decision process but the state space
would again be enormous. Also our question is different today: We are not interested in the
optimal policy but we would like to see how close we can get to the optimal offline solution.

To this end, we consider the following GreedyWithSample algorithm. Draw t′1, . . . t
′
k

from the probability distribution. Let T ′ = {t′1, . . . t′k}. Initialize S = MST(T ′). Now, like in
the Greedy Algorithm, connect arriving new terminals to the current Steiner tree via a shortest
path. That is, when ti arrives, let vi be the one of the vertices r, t′1, . . . , t

′
k, t1, . . . , ti−1 that is

closest to ti. (Note that this can also be ti itself because we draw from our distribution with
replacement.) Add ei = {ti, vi} to S.

For this algorithm, we get a similar guarantee as in competitive analysis but now taken in
expectation over all possible inputs from the distribution and not point-wise for every possible
sequence. The big difference is that we only lose a constant factor compared to the expected
cost of the optimal offline solution.

Theorem 11.2. GreedyWithSample guarantees E [c(ALG(σ))] ≤ 4 · E [c(OPT(σ))], where
the expectation is taken over σ.

Proof. Our algorithm’s cost consists of two components: The cost of MST(T ′) and then the
cost of e1, . . . , ek.

Observe that T and T ′ are identically distributed. Therefore

E
[
w(MST(T ′))

]
= E [w(MST(T ))] ≤ 2E [w(Steiner(T )] .

In the remainder of the proof, we will show that

E

[
k∑

i=1

w(ei)

]
≤ E

[
w(MST(T ′))

]
.

Together this then implies

E [c(ALG(σ))] = E

[
w(MST(T ′)) +

k∑
i=1

w(ei)

]
≤ 4E [w(Steiner(T )] = 4E [c(OPT(σ))] .

In order to upper-bound w(ei), observe the following. Instead of connecting ti to the closest
of r, t′1, . . . , t

′
k, t1, . . . , ti−1, we might also confine ourselves to r, t′1, . . . , t

′
i−1, t

′
i+1, . . . , t

′
k, meaning

that we connect to the closest of these k vertices. This can only increase the distance.
More formally, let us write d(T ′−i, ti) = minv∈T ′−i

w({v, ti}), where T ′−i = {t′j | j 6= i} ∪ {r}.
Now we can write E [w(ei)] ≤ E

[
d(T ′−i, ti)

]
= E

[
d(T ′−i, t

′
i)
]
. The last step is crucial: ti and

t′i are identically distributed; all other t′j are independent. So, we can swap the two. Now the
following lemma comes to our rescue.

Lemma 11.3. Let u1, . . . , u` ∈ V be any ` not necessarily distinct vertices. Let U−i =
{uj | j 6= i} ∪ {r}. Then for d(Ui, ui) = minv∈Ui w({v, ui}), we have

∑`
i=1 d(U−i, ui) ≤

w(MST({u1, . . . , u`})).

Proof. For each ui, we will define vi ∈ Ui, which helps us bound d(U−i, ui) ≤ d(ui, vi). To this
end, consider MST({u1, . . . , u`}) as a tree rooted at r. If ui ∈ U−i (this can happen because
u1, . . . , u` are not necessarily distinct), define vi = ui. Otherwise, if ui 6∈ U−i, define vi ∈ U−i
as the parent of ui in MST({u1, . . . , u`}).

Note that each edge from MST({u1, . . . , u`}) occurs at most once as (ui, vi).



Algorithms and Uncertainty, Summer 2021 Lecture 11 (page 3 of 5)

Therefore ∑̀
i=1

d(U−i, ui) ≤
∑̀
i=1

d(ui, vi) ≤ w(MST({u1, . . . , u`})) .

Figure 1: Illustration of Lemma 11.3 with ` = 7. The three thick edges appear as (ui, vi),
connecting the three vertices, which appear only once. The others appear twice, so they are
connected to themselves.

Combining the above observations with Lemma 11.3, we now get

E

[
k∑

i=1

w(ei)

]
=

k∑
i=1

E [w(ei)] ≤
k∑

i=1

E
[
d(T ′−i, ti)

]
= E

[
k∑

i=1

d(T ′−i, ti)

]
≤ E

[
w(MST({t′1, . . . , t′k}))

]
.

Overall, this proves the theorem.

3 Random Order

Now, we will turn to a different setting. Namely, there is a fixed sequence of terminals t1, . . . , tk,
which will be presented to us but in a random order. One could hope that this would allow us to
obtain improved bounds compared to a worst-case order like in the optimal-stopping problem.
However, this is not true here. Even with random order, we cannot beat the O(log k)-factor.

Theorem 11.4. There is no algorithm, which guarantees E [c(ALG(σ))] ≤ αc(OPT(σ)) for
α = o(log k), even when the sequence is presented in random order and when the algorithm is
allowed to use randomization.

Proof. Without loss of generality, we assume the algorithm whenever it picks edges it only
chooses a simple path which does not contain any terminals except its endpoint. This is without
loss because removing any further edges from the algorithm’s choice will only decrease its cost.

We will construct our instances again based on diamond graphs. Recall that we define the
diamond graph Dj of level j recursively: Dj+1 is defined by connecting 4 copies of Dj as depicted
in the following picture.

D1 D2 Dj+1

Dj

Dj

Dj

Dj

· · ·



Algorithms and Uncertainty, Summer 2021 Lecture 11 (page 4 of 5)

Note that each node is the central node of the top or bottom path in some Dj . Call this j
the level of this vertex. So Dj contains 2 vertices of level j, 8 vertices of level j − 1, and, more
generally, 2 · 4i vertices of level j − i.

Our goal is to define a graph and a sequence of terminals of length at most k in this graph.
We only consider the case that k is a power of 16 and we let ` = 1

2 log4 k (which is an integer
then) and consider the graph D`.

To define the sequence of terminals, we draw one path from the left to the right node in D`

uniformly at random. Note that this path crosses through 2i copies of a diamond graph of level
D`−i and therefore also through 2i nodes of level `− i for i ∈ {0, . . . , `− 1}.

In our sequence, we will not simply request each node on this path once but multiple
times. Namely, we request each of the nodes of level `− i in the path 4`−i times. This has no
consequence for the offline optimum because repeated terminals still have to be connected only

once. Observe that the length of our sequence is now
∑`

i=0 2i · 4`−i = 4`
∑`

i=0

(
2
4

)i ≤ 2 · 4` = k.
These repetitions have a crucial effect on the random order, which make it appear close

enough to a worst-case order. The idea is as follows: When the first copy of a level-j vertex
on the path arrives, it is likely that none of the vertices of levels 1, . . . , j − 1 in the respective
level-(j + 1) diamond subgraph have arrived so far. In such a case, the algorithm has had no
information regarding the terminals in this subgraph before. In particular, it does not know
whether the level-j vertex will be the one at the top or at the bottom. Therefore, it is likely
that it has to pay the cost of connecting this vertex to one of the endpoints of the subgraph.

To make this argument formal, let vj,b be the b-th level-j vertex on the path (viewed from
the left, not as it appears in the sequence). Note that this is a random variable as we are
requesting a random path. Let Xj,b be the cost that the algorithm incurs when connecting
this vertex. This random variable depends not only on the path but also on the random order,
which shuffles the input. Furthermore, we can allow the algorithm to be randomized; this does
not change this argument.

We now claim that E [Xj,b] ≥ 2j−3 for all j and b.
This will cause that the overall cost of the algorithm is at least

E

∑̀
j=1

2`−j∑
b=1

Xj,b

 =
∑̀
j=1

2`−j∑
b=1

E [Xj,b] ≥
∑̀
j=1

2`−j2j−3 =
`

8
2` .

Note that the offline optimum will always have cost 2` because it is simply the one path that
we started from.

To bound E [Xj,b], we observe that vj,b will be a middle node of a diamond graph of level
j + 1. The path connects the left and the right vertex of this graph. More precisely, there are
2i terminals of level j − i between the left and right vertex for i ∈ {0, . . . , j − 1}.

Therefore, with probability

4j∑j−1
i=0 2i4j−i

≥ 1∑∞
i=0

(
1
2

)i =
1

2

one copy of vj,b is the first terminal to arrive inside this Dj+1.
The key observation is as follows. Before any of the other terminals in this Dj+1 arrive,

we have no information whether vj,b is the middle vertex at the top or at the bottom. Both
is equally likely. Because there were no terminals requested inside this Dj+1 so far, all chosen
edges (if any) will either be in the top or in the bottom half.

So, with probability at least 1
2 ·

1
2 , the algorithm will have to pay at least the cost of connecting

vj,b to one of the level-(j + 1) vertices. The cost of this is 2j−1.
So, overall E [Xj,b] ≥ 1

2 ·
1
2 · 2

j−1 = 2j−3.



Algorithms and Uncertainty, Summer 2021 Lecture 11 (page 5 of 5)

4 Overview: Probabilistic Online Models

We have seen two different online models, which introduce some randomness. There are a couple
of others as depicted in the following diagram.

known identical distributions

known distributions

unknown identical distributions random order

worst case

Here an arrow a −→ b indicates that a is a special case of b or in other words that any
algorithm solving b can also solve a with the same guarantee — some of these are trivial, others
nice exercises. One should also mention that case of unknown, non-identical distributions is
meaningless because there is nothing that could be observed and learned. So, it is as difficult
as the worst case.

While these relations hold generally, one can also show in the case of Online Steiner Tree
specifically that even with unknown identical distributions the same Ω(log k)-lower bound still
applies. So the frontier seems to be between cases in which we know the distributions beforehand
and in which we do not know them.

Reference

• Naveen Garg, Anupam Gupta, Stefano Leonardi, Piotr Sankowski: Stochastic analyses
for online combinatorial optimization problems. SODA 2008.


