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Abstract
In the interference scheduling problem, one is given a set of n communication requests described by source-
destination pairs of nodes from a metric space. The nodes correspond to devices in a wireless network. Each
pair must be assigned a power level and a color such that the pairs in each color class can communicate
simultaneously at the specified power levels. The feasibility of simultaneous communication within a color
class is defined in terms of the Signal to Interference plus Noise Ratio (SINR) that compares the strength of a
signal at a receiver to the sum of the strengths of other signals. The objective is to minimize the number of
colors as this corresponds to the time needed to schedule all requests.

We introduce an instance-based measure of interference, denoted by I, that enables us to improve on
previous results for the interference scheduling problem. We prove upper and lower bounds in terms of I
on the number of steps needed for scheduling a set of requests. For general power assignments, we prove a
lower bound of Ω(I/(log ∆ logn)) steps, where ∆ denotes the aspect ratio of the metric. When restricting to
the two-dimensional Euclidean space (as previous work) the bound improves to Ω(I/ log ∆). Alternatively,
when restricting to linear power assignments, the lower bound improves even to Ω(I). The lower bounds
are complemented by an efficient algorithm computing a schedule for linear power assignments using only
O(I logn) steps. A more sophisticated algorithm computes a schedule using even only O(I + log2 n) steps.
For dense instances in the two-dimensional Euclidean space, this gives a constant factor approximation
for scheduling under linear power assignments, which shows that the price for using linear (and, hence,
energy-efficient) power assignments is bounded by a factor of O(log ∆).

In addition, we extend these results for single-hop scheduling to multi-hop scheduling and combined
scheduling and routing problems, where our analysis generalizes previous results towards general metrics and
improves on the previous approximation factors.
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1 Introduction
The media access control (MAC) layer of wireless networks is responsible for scheduling signals taking into
account interference caused by concurrent transmissions. Early algorithmic studies of this task were based on
graph theoretical vicinity models (see, e.g., [11, 19, 9]). In more recent literature, these studies have been critized
to not model interference appropriately as they assume that the interference caused by signals ends abruptly at
some boudary (see, e.g.,[15, 16, 4, 5]).

Like the other recent studies mentioned above, we describe interference using the so-called physical model in
which it is assumed that the strength of a signal fades with the distance from the sender. This fading is described
by a path loss exponent α ≥ 1.1 The strength of a signal sent with some power p received by a node (transceiver)
v at distance d from the source of the signal is assumed to be p/dα. The node v can successfully receive the signal
if its strength is sufficiently large in comparison to the sum of other signals that are sent simultaneously plus
ambient noise, that is, if the signal to interference plus noise ratio (SINR) is above some threshold β > 1, the
so-called gain.

The interference scheduling problem is formally defined as follows. Let V be a set of nodes from a metric
space. Let d(u, v) denote the distance between two nodes u and v. One is given a set R of n requests consisting
of pairs (ui, vi) ∈ V 2, where ui is the source and vi the destination of the signal from the i-th request. For every
i ∈ [n] := {1, . . . , n}, one needs to specify a power level pi > 0 and a color ci ∈ [k] := {1, . . . , k} such that the
latency, i. e., the number of colors, k, is minimized and the pairs in each color class satisfy the SINR constraints
for all signals: For every i ∈ [n], it must hold that

pi
d(ui, vi)α

≥ β

 ∑
j∈[n]\{i}
cj=ci

pj
d(uj , vi)α

+ ν

 ,

where ν ≥ 0 expresses ambient noise. The so-called scheduling complexity of R, as introduced by Moscribroda
and Wattenhofer [15], is the minimal number of colors (steps) needed to schedule the requests in R.

In this work, we mostly focus on linear power assignments, i.e., for a request pair (ui, vi) the power
is proportional to d(ui, vi)α and, hence, linear in fading. Linear power schemes also have been considered
in [2, 21, 4]. Our analysis will show, that one loses only a factor of order log ∆ due to restricting to this power
scheme (where the aspect ratio ∆ denotes the ratio between the longest and shortest distance between any two
nodes). Let us remark that the dependence on the aspect ratio ∆ cannot be avoided using the linear power
assignment which, without taking into account other parameters than n, cannot achieve an approximation
ratio better than Ω(n) [15, 7]. Besides leading to good performance results, linear power assignments have the
advantage being energy-efficient as the minimal transmission power required to transmit along a distance d is
Θ(dα).

1.1 Our contribution
We introduce an instance-based measure of interference that enables us to estimate the scheduling complexity of
any set of requests within small factors.

Definition 1 (Measure of Interference). Let R ⊆ V × V be a set of requests. For w ∈ V define

Iw(R) =
∑

(u,v)∈R

min
{

1, d(u, v)
α

d(u,w)α

}
.

Using this we define the measure of interference induced by the requests R:

I = I(R) = max
w∈V

Iw(R) .

We prove upper and lower bounds on the number of steps needed for scheduling R in terms of I. For general
power assignments and general metrics, we prove a lower bound of Ω(I/log ∆ logn) steps. When restricting to the
two-dimensional Euclidean space and assuming α > 2 the bound improves to Ω(I/log ∆). Alternatively, when
restricting to linear power assignments and assuming general metrics, this bound improves even to Ω(I). The
lower bounds are complemented by an efficient algorithm computing a schedule for linear power assignments

1It is usually assumed, that α satisfies 2 < α < 5. Our analysis holds for any constant α ≥ 1, unless stated otherwise.
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using only O(I logn) steps. A more sophisticated algorithm computes a schedule using even only O(I + log2 n)
steps. This gives a constant factor approximation of the optimal schedule under linear power assignments for
dense instances, i.e., if I ≥ log2 n. Combining this upper bound for linear power assignments with the lower
bound for general power assignments and the two-dimensional Euclidean space shows that the price for using
linear, in other words, energy-efficient power assignments is of order O(log ∆).

We further extend our results towards multi-hop scheduling and routing. In the multi-hop scheduling problem,
a request is defined by a sequence of pairs, so-called paths, rather than a single pair of nodes. Along each of
these paths, one should forward a signal from the first to the last node on the path. Let D denote the maximum
number of hops on each of these paths, the so-called dilation. Generalizing, the lower bounds from the single-hop
to the multi-hop problem, shows that one needs at least Ω(I/log ∆ logn +D) steps, for general power assignments,
Ω(I/log ∆ +D) for the Euclidean space, and Ω(I +D) steps, for linear power assignments. We show how to extend
our second algorithm for the single-hop scheduling to the multi-hop case, where it produces a schedule of at most
O(I +D · log2 n) steps.

Our results for multi-hop scheduling reminds of the O(congestion + dilation)-type results that have been
shown previously for routing in wired networks, see, e.g. [12, 13, 1, 20]. In fact, this previous work was the
inspiration to search for an instance-based density measure that allows to derive lower bounds for the scheduling
complexity in wireless networks like the congestion in wired networks. At this point, let us remark that, unlike
the congestion, our interference measure I does not trivially give a lower bound on the number of steps needed
for scheduling a set of requests but it requires a careful analysis as also the upper bound does.

Finally, we extend our result to combined multi-hop routing and scheduling. Now requests are again
defined by pairs of nodes. The problem is to find source-destination paths for all requests and to compute a
power assignment and a schedule delivering all packets using as few steps as possible. Combining our multi-hop
scheduling algorithm with a linear programming approach for computing paths that minimize the term max{I,D}
gives an O(log ∆ log3 n)-approximation for the combined routing and scheduling problem in general metrics. In
the two-dimensional Euclidean space the approximation factor is O(log ∆ log2 n). This generalizes the results
from Chafekar et al. [4] (cf. Section 1.2) towards general metrics and improves on their approximation factors.

1.2 Related Work
The first theoretical studies about interference scheduling in the physical model focus on topologies generated by
placing nodes randomly in two-dimensional Euclidean space, see, e.g., [8, 3, 10].

The study of interference scheduling with respect to arbitrary topologies has been initiated by Moscibroda
and Wattenhofer [15]. They present the first analysis of the interference scheduling problem. However, they do
not handle general request sets but only specific kinds of sets. In particular, they study the question of how
many time slots are needed to schedule a set of communication requests ensuring strong connectivity among
n points placed arbitrarily in two-dimenisonal Euclidean space. On the one hand, they prove that there are
configurations requiring Ω(n) time slots using either uniform or linear power assignments, when not taking other
parameters, like the aspect ratio ∆, into account. On the other hand, they show that O(log4 n) time slots are
sufficient to ensure strong connectivity when choosing the right power assignment.

This result has been extended by Moscibroda et al. [16] to arbitrary demands. Their result is an O(log2 n · Iin)
algorithm, where Iin is a certain interference measure. This result enables them to improve the bound for strong
connectivity from O(log4 n) to O(log3 n). Unfortunately, Iin is no lower bound for the optimal schedule length.
Thus, it does not give any approximation guarantee for general request sets since there is no comparison between
Iin and the optimal schedule length.

In [14], another measure of interference χρ called disturbance is introduced where ρ > 0 is a parameter. The
algorithm described achieves a schedule length of O(χρρ2 logn · (logn+ ρ)). Unfortunately, also this result does
not yield a comparison to the optimal schedule length.

Fanghänel et al. [7] deal with directed and undirected request sets. For the directed case they extend
the results of Moscibroda and Wattenhofer by showing that any power assignment that is oblivous, i. e., the
transmission power is based only on the distance between the sender and the receiver, cannot be bounded in an
useful manner without taking into account metric properties like the aspect ratio ∆. For the undirected case
they prove the square-root power assignment to be an O(log3.5+α n)-approximation. However, neither is this
power scheme energy efficient, nor can their constructive results be generalized towards the multi-hop case with
standard techniques, as there is no measure of interference given that is a lower bound for the optimal schedule.

Chafekar et al. [4] study the combined routing and multi-hop version of the interference scheduling problem.
It is crucial for their analysis to deal with two-dimensional Euclidean instances and α > 2. This allows to use
graph coloring in a similar way to the approaches used in the graph-theoretical vicinity models. Our approach
instead works in general metrics taking the non-locality of the SINR constraint into account. In their analysis
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the considered power assignment is restricted, that is, it is assumed that power levels must be chosen from a
specified interval [pmin, pmax]. It yields a schedule using O(opt′ · log2 n log ∆ log2 Γ) time slots where opt′ denotes
the minimal number of time slots needed for a schedule with slightly smaller power range [pmin, (1− ε)pmax] and
Γ denotes the ratio between pmax and pmin.

2 Introducing a Measure of Interference
In this section we justify the choice of our measure of interference, as it yields lower bounds for the optimal
schedule length under both arbitrary and linear power assignments. In Section 2.1 we show, that the length T of
an optimal schedule using a linear power assignment is lower bounded by Ω(I). In Section 2.2 we show, that
a lower bound for the length of an optimal schedule under an arbitrary power assignment is Ω(I/log ∆·logn) in
general metrics and Ω(I/log ∆) in the two-dimensional Euclidean space for α > 2.

2.1 A Comparison to the Optimal Schedule Using Linear Power Assignments
Theorem 1. Let T be the minimum schedule length for a set of requests R in a linear power assignment. Then
we have T = Ω(I).

Proof. Let there be a schedule of length T when using a linear power assignment. Then there exist sets of
requests R1, . . . , RT each of which satisfies the SINR constraint for the linear power assignment. I is subadditive,
i. e., we have I

(⋃T
t=1Rt

)
≤
∑T
t=1 I (Rt). Thus it suffices to show that I(Rt) = O(1) for such a set.

Let Rt = {(u1, v1), . . . , (un̄, vn̄)}. Let furthermore be w ∈ V . The node w does not necessarily act as
a receiver vi in this request set Rt. This is why we define vj as the closest (active) receiver from w, i. e.
j ∈ arg mini∈[n̄] d(vi, w). This node might also be w itself.

To bound the measure of interference, we distinguish between two kinds of requests. We define a set U
of indices of requests whose senders ui lie within a distance of at most 1

2d(vj , w) from w, i. e. U = {i ∈ [n̄] |
d(ui, w) ≤ 1

2d(vj , w)}. Using the triangle inequality we can conclude for all i ∈ U :

d(ui, vj) ≤ d(ui, w) + d(w, vj) ≤
3
2
d(vj , w) . (1)

In addition, we have

d(vj , w) ≤ d(vi, w) since vj is the closest receiver
≤ d(vi, ui) + d(ui, w) by triangle inequality

≤ d(vi, ui) + 1
2
d(vj , w) by definition of U .

This implies
d(vj , w) ≤ 2d(ui, vi) . (2)

Combining Equation 1 and Equation 2 we get d(ui, vj) ≤ 3d(ui, vi). Thus it holds

|U \ {j}| =
∑
i∈U
i 6=j

d(ui, vi)α

d(ui, vi)α
≤
∑
i∈U
i 6=j

d(ui, vi)α
1
3α d(ui, vj)α

≤ 3α

β
.

For all i ∈ [n̄] \ U it holds that

d(ui, vj) ≤ d(ui, w) + d(w, vj) by triangle inequality
≤ d(ui, w) + 2d(ui, w) by definition of U
= 3d(ui, w) .

Now, we can sum up all i ∈ [n̄] \ U :∑
i∈[n̄]\U
i 6=j

d(ui, vi)α

d(ui, w)α
≤

∑
i∈[n̄]\U
i 6=j

d(ui, vi)α
1
3α d(ui, vj)α

≤ 3α

β
.
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Summing up all i ∈ [n̄] gives

Iw(Rt) =
∑
i∈[n̄]

min
{

1, d(ui, vi)
α

d(ui, w)α

}
≤ |U \ {j}|+

∑
i∈[n̄]\U
i 6=j

d(ui, vi)α

d(ui, w)α
+ 1 ≤ 2 · 3α

β
+ 1 = O(1) .

2.2 A Comparison to the Optimal Schedule
Theorem 2. Let T denote the optimal schedule length using any power assignment. Then we have T =
Ω (I/log ∆·logn).

Proof. To prove this theorem, we use a similar technique as in the proof of Theorem 1. However, we have to deal
with an unknown power assignment. Since there is a schedule of length T in this power assignment, there exist
sets of requests R1, . . . , RT each of which satisfies the SINR constraint for this power assignment. We divide such
a set Rt into log ∆ classes Ct,j = {(u, v) ∈ Rt | 2j−1dmin ≤ d(u, v) ≤ 2jdmin}, where dmin = min(u,v)∈R d(u, v).
Again, by using the subadditivity of I, it suffices to show that I(Ct,j) = O(logn) for such a class. Fix Ct,j and
let Ct,j = {(u1, v1), . . . , (un̄, vn̄)}. Further, for clarity we write L = 2j−1dmin.

As an important fact we can bound the number of requests whose senders are located around a node within a
distance of at most `.

Fact 3. For all w ∈ V , ` ≥ L we have for K`(w) = {i ∈ [n̄] | d(ui, w) ≤ `}:

|K`(w)| ≤ 1
β

(
4`
L

)α
+ 1 .

Proof. Let p be the power assignment that allows all requests to be served in a single time slot. Let furthermore
be (uk, vk) be the request with k ∈ KL(w) that is transmitted with minimal power pk. As the SINR condition is
satisfied for request (uk, vk), we get:

1
β

pk
d(uk, vk)α

≥
∑

i∈K`(w)
i 6=k

pi
d(ui, vk)α

≥
∑

i∈K`(w)
i 6=k

pi
(2`+ 2L)α

≥ (|K`(w)| − 1) · pk
(2`+ 2L)α

.

So:
|K`(w)| − 1 ≤ 1

β

(
2`+ 2L
d(uk, vk)

)α
≤ 1
β

(
4`
L

)α
.

To prove I(Ct,j) = O(logn), let w be a vertex such that Iw(Ct,j) = I(Ct,j). W. l. o. g. let u1, . . . , un̄ be
ordered by increasing distance to w. Note that for all ` > 0 we have K`(w) = {1, . . . , x} for some x ∈ N by this
definition.

For k ≤ log n̄ + 1 let be Rk = [2k] \ [2k−1]. Furthermore, let `k be defined as `k = mini∈Rk d(ui, w). For
I(Ct,j) follows from these definitions:

I(Ct,j) =
n̄∑
i=1

min
{

1, d(ui, vi)
α

d(ui, w)α

}
≤

log n̄+1∑
k=1

∑
i∈Rk

d(ui, vi)α

d(ui, w)α
+

∑
i∈KL(w)

1 ≤ (2L)α
log n̄+1∑
k=1

|Rk|
`αk

+ |KL(w)|

As the distances are increasing, we have `k ≥ d(ui, w) for all i ≤ 2k−1. In other words: [2k−1] ⊆ K`k(w).
Since we add up the interference induced by requests from KL(w) separately, we may assume `k ≥ L for all k

and thus apply Fact 3 on |K`k(w)|, which gives

2k−1 = |[2k−1]| ≤ |K`k(w)| ≤
(

4`k
L

)α
+ 1 .

Consequently, we have

`αk ≥ (2k−1 − 1)
(
L

4

)α
.
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Using the above results for `αk and |KL(w)| we can bound I(Ct,j) by:

(2L)α
log n̄+1∑
k=1

2k−1

(2k−1 − 1)
(
L
4
)α +

(
4α

β
+ 1
)
≤ 8α

log n̄+1∑
k=1

2 + 4α

β
+ 1 = O(logn)

In previous work, the instances often are restricted to the Euclidean plane and α is required to be strictly
greater than 2. Under these assumptions we can use geometric arguments to get an even better bound of Ω(I/log ∆)
on the optimal schedule length, as we show in the following.

Theorem 4. Let the instance be located in the Euclidean plane and let α > 2. Then we have T = Ω(I/log ∆),
where T denotes the optimal schedule length using any power assignment.

Proof. Again, we divide the requests into log ∆ · T classes Ct,i. This time, we have to prove I(Ct,i) = O(1).
Let us remark that in the Euclidean plane a ring of inner radius L · r and width L can be covered by 8(r + 1)
circles of radius L. If x is the center of such a circle, we get from Fact 3 that |KL(x)| ≤ 4α

β . Thus we have
|KL(r+1)(w) \KLr(w)| ≤ 8(r + 1) 4α

β ≤ 16r 4α
β = r 4α+2

β for r ≥ 1. We can write Iw(Ct,j) = I(Ct,j) as

I(Ct,j) ≤
∞∑
r=1
|KL(r+1)(w) \KLr(w)| · (2L)α

(Lr)α
+ |KL(w)| .

Using the above result we get:

2α 4α+2

β

∞∑
r=1

r1−α + 4α

β
≤ 4α

β

(
2α42α− 1

α− 2
+ 1
)

= O(1) .

In total we proved several bounds on the measure of interference that allow comparisons to the scheduling
complexity. To complete these results, we will present a single-hop algorithm that generates a schedule of length
O(I + log2 n) whp in the next section and extend this to multi-hop scheduling afterwards.

3 Single-Hop Scheduling
The measure of interference enables us to design randomized algorithms using linear power assignments, i. e., the
power for the transmission from u to v is c · d(u, v)α for some fixed c ≥ βν. As a key fact, we can simplify the
SINR constaint in this setting as follows. If R is a set of requests that can be scheduled in one time slot, we have
for all nodes v′ with (u′, v′) ∈ R ∑

(u,v)∈R
(u,v)6=(u′,v′)

c · d(u, v)α

d(u, v′)α
≤ c

β
− ν .

Since β > 1 we can write equivalently

Iv′(R) =
∑

(u,v)∈R

min
{

1, d(u, v)
α

d(u, v′)α

}
≤ 1
β
− ν

c
. (3)

For simplicity of notation we replace 1
β −

ν
c by 1

β′ in the following proofs.

3.1 A Basic Algorithm
The idea of our basic algorithm (Algorithm 1) is that each sender decides randomly in each time slot if it tries to
transmit until it is successful. The probability of transmission is set to 1

2β′I and is not changed throughout the
process.

Theorem 5. Algorithm 1 generates a schedule of length at most O(I logn) whp.
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while packet has not been successfully transmitted do1
try transmitting with probability 1

2β′I2

end3

Algorithm 1: A simple single-hop algorithm

Proof. Let us first consider the probability of success for a fixed request (uk, vk) in a single step of the algorithm.
Let Xi, i ∈ [n], be the 0/1 random variable indicating if sender ui tries to transmit in this step. Assume a sender
uk tries to transmit in this step, i. e. Xk = 1. To make this attempt successful, the SINR constraint (Equation 3)
has to be satisfied. We can express this event as Z ≤ 1/β′ where Z is defined by

Z =
∑
i∈[n]
i6=k

min
{

1, d(ui, vi)
α

d(ui, vk)α

}
Xi .

We have E [Z] ≤ 1/2β′ and thus we can use Markov’s inequality to bound the probability that this packet cannot
be transmitted successfully by

Pr
[
Z ≥ 1

β′

]
≤ Pr [Z ≥ 2E [Z]] ≤ 1

2
.

To make the transmission successful the two events Xk = 1 and Z ≤ 1/β′ have to occur. Since they are independent
it holds that

Pr
[
Xk = 1, Z ≤ 1

β′

]
= Pr [Xk = 1] · Pr

[
Z ≤ 1

β′

]
≥ 1

2β′I

(
1− 1

2

)
= 1

4β′I
.

The probability for packet k not to be successfully transmitted in (k0 + 1)4β′I lnn independent repeats of such a
step is therefore at most (

1− 1
4β′I

)(k0+1)4β′I lnn
≤ e−(k0+1) lnn = n−(k0+1) .

Applying a union bound we get an overall bound on the probability that one of n packets is not successfully
transmitted in these independent repeats by n−k0 . This means all senders are successful within O(I logn) steps
whp.

3.2 A More Sophisticated Algorithm
An obvious disadvantage of the basic algorithm is that the probability of transmission stays the same throughout
the process. To improve it, one idea could be to increase the probability of transmission after some transmissions
have successfully taken place. This why we need the following weighted Chernoff bound that can deal with
dependent random variables.

Lemma 6. Let X1, . . . , Xn be 0/1 random variables for which there is a p ∈ [0, 1] such that for all k ∈ [n] and
all a1, . . . , ak−1 ∈ {0, 1}

Pr [Xk = 1 | X1 = a1, . . . Xk−1 = ak−1] ≤ p . (4)
Let furthermore w1, . . . , wn be reals in (0, 1] and µ ≥ p

∑
wi. Then the weighted Chernoff bound

Pr
[

n∑
i=1

wiXi ≥ (1 + δ)µ

]
≤
(

eδ

(1 + δ)(1+δ)

)µ
holds.

Proof (Sketch). To show this bound, a standard proof for the weighted Chernoff bound [17] can be adapted. By
using the definition of expectation and repeatedly applying Equation 4, one can show that

E
[
etX
]
≤

n∏
i=1

(
petwi + 1− p

)
,

although random variables are no more independent. In the original proof no other step makes use of the
independence.
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We can now use this bound to analyze Algorithm 2. This algorithm assigns random delays to all packets.
The maximum delay is decreased depending on Icurr, which denotes the measure of interference that is induced
by the requests that have not been scheduled at this point.

while Icurr ≥ logn do1
J := Icurr2

while Icurr ≥ J
2 do3

if packet i has not been successfully transmitted then4
assign a delay 1 ≤ δi ≤ 16eβ′J i. u. r.5
try transmission after waiting the delay6

end7

end8

end9
execute algorithm Algorithm 110

Algorithm 2: An O(I + log2 n) whp algorithm

The algorithm works as follows: During one iteraton of the outer while loop by repeatedly assigning random
delays to the packets the measure of interference is reduced to a half of its initial value. This is repeated until we
have Icurr < logn and the basic algorithm is applied.

Our first observation is that reducing Icurr by factor 2 takes O(Icurr) scheduling steps whp.

Lemma 7. During one iteration of the outer while loop, the inner while loop of Algorithm 2 is executed at most
k0 + 2 times with probability at least 1− n−k0 for all constants k0.

Proof. Let us first consider a single iteration of this loop. We assume all senders are taking part as if none has
been successful during this iteration of the outer while loop yet. We only benefit from any previous success.

Observe, if the senders of a set S are transmitting and there is a collision for packet i we have∑
j∈S
j<i

min
{

1, d(uj , vj)
α

d(uj , vi)α

}
>

1
2β′

or
∑
j∈S
j>i

min
{

1, d(uj , vj)
α

d(uj , vi)α

}
>

1
2β′

.

In the first case let Y <i = 1, in the second one Y >i = 1. We now show that the random variables Y <1 , . . . ,
Y <n fulfill Equation 4 with probability p = 1

8e . Let us fix k ∈ [n] and a1, . . . , ak−1 ∈ {0, 1}. We have to show
Pr
[
Y <k = 1 | Y <1 = a1, . . . , Y

<
k−1 = ak−1

]
≤ p.

Since the delays δi are drawn independently they can be considered as if they were drawn one after the other
in order δ1, δ2, . . .. Then the value of Y <i would already be determined after drawing δi by definition. In other
words: The values of δ1, . . . , δk−1 already determine the values of Y <1 , . . . , Y <k−1. It follows that there is a subset
M ⊆ [16eβ′J ]k−1 of delay values such that Y <1 = a1, . . . , Y

<
k−1 = ak−1 iff (δ1, . . . , δk−1) ∈M .

Now let Xi be a 0/1 random variable for i ∈ [k − 1] such that Xi = 1 iff δi = δk. We can observe that we
have for all (b1, . . . , bk−1) ∈ [16eβ′J ]k−1:

E [Xi | δ1 = b1, . . . , δk−1 = bk−1] = 1
16eβ′J

.

Define furthermore

Z<k =
k−1∑
i=1

min
{

1, d(ui, vi)
α

d(ui, vk)α

}
Xi

with E [Z<k | δ1 = b1, . . . , δk−1 = bk−1] ≤ 1
16eβ′ . Now it holds that

Pr
[
Y <k = 1 | δ1 = b1, . . . , δj−1 = bk−1

]
= Pr

[
Z<k >

1
2β′

∣∣∣∣∣ δ1 = b1, . . . , δk−1 = bk−1

]
≤ 2β′E

[
Z<k | δ1 = b1, . . . , δk−1 = bk−1

]
= 1

8e
= p .
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We can now apply the so-called law of alternatives:

Pr
[
Y <k = 1 | Y <1 = a1, . . . , Y

<
k−1 = ak−1

]
=

∑
(b1,...,bk−1)∈M

Pr
[
δ1 = b1, . . . δk−1 = bk−1 | Y <1 = a1, . . . , Y

<
k−1 = ak−1

]
·Pr

[
Y <k = 1 | δ1 = b1, . . . , δk−1 = bk−1

]
≤ p .

Thus we may apply Lemma 6 on I<w defined as follows:

I<w =
n∑
i=1

min
{

1, d(ui, vi)
α

d(ui, w)α

}
Y <i .

This random variable indicates the remaining measure of interference that is caused by these collisions. Setting
δ = 2e− 1 and µ = J

8e Lemma 6 states

Pr
[
I<w ≥

J

4

]
≤ 2− J4 ≤ n−1 .

Let us now consider the situation after k0 + 2 iterations of the inner while loop. Since these are independent
repeats we have

Pr
[
I<w ≥

J

4

]
≤ n−(k0+2) .

With a symmetric argument this also applies to I>j . For a sender that has not been successful we have Z<j +Z>j ≥ 1.
This means we have the bound Icurr

w ≤ I<w + I>w . For the remaining measure of interference Icurr = maxw∈V Icurr
w

we can conclude

Pr
[
Icurr ≥ J

2

]
≤

∑
w∈V

Pr
[
Icurr
w ≥ J

2

]
≤

∑
w∈V

Pr
[
I<w ≥

J

4
or I<w ≥

J

4

]
≤ n

(
n−(k0+2) + n−(k0+2)

)
≤ n−k0 .

Using this lemma, we can add up all numbers of steps that are generated in the while loops.

Theorem 8. Algorithm 2 generates a schedule of length at most O(I + log2 n) steps whp.

Proof. Let Tk denote the number of scheduling steps generated in the k-th execution of the outer while loop. In
the previous lemma we showed Tk = O(I/2k) whp. This means the while loops generate in total

∑
k Tk = O(I)

step whp. The basic algorithm generates at most an additional O(log2 n) steps whp which concludes the proof.

In sufficiently dense instances, i. e., I ≥ log2 n, this algorithm yields a constant-factor approximation for the
optimal schedule compared to the linear power assignment with high probability. Compared to the optimal
power assignment the approximation factor is O(log ∆ · logn) whp for general metrics resp. O(log ∆) for the
two-dimensional Euclidean plane.

Algorithm 1 can be implemented in a distributed way losing a factor logn in the following way. In contrast to
the centralized problem, the nodes do not know the correct value of I, thus, they do not know their transmission
probability. Now in the distributed setting the algorithm processes in each while iteration logn steps, where in
each of these steps the transmission probability is halfed, that is, starting by 1/2β′ down to 1/2β′n.

Algorithm 2 can be modified analogeously, leading to a schedule of length O(logn · (I + log2 n)) whp.
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4 Extensions for Multi-hop Scheduling and Routing
The multi-hop variant of the interference scheduling problem was first stated by Chafekar et al. [4] as Cross-Layer
Latency Minimization (CLM). Given m source destination pairs (si, ti), the objective is to find paths from si
to ti to send the packets along, powers for each transmission and a schedule assigning the hops to time slots. In
this section we will present how the measure of interference introduced in Section 2 and the single-hop algorithms
from Section 3 can be extended to multi-hop scheduling.

4.1 Multi-hop Scheduling with Fixed Paths
Let us first consider the paths to be fixed. In this case the task is to schedule a set of requests R consisting of n
pairs of nodes that lie on paths, respecting dependencies such that one request may not be served before the
ones lying earlier on the path have been served. Obviously, the bounds on the measure of interference proven
in Section 2 still hold. However, we additionally express these dependencies in the dilation D, which is the
maximum path length. Of course, any schedule using an arbitrary power assignment has length at least D.

In a naive approach to solve this problem we could regard the multi-hop problem as a concatenation of D
single-hop problems and schedule each of them separately. This schedule has a length of O((I + log2 n)D) steps
whp. Algorithm 3 extends this idea by assigning a random delay to each packet. This technique has also been
applied for scheduling in wired networks, e.g., by Leighton et al. [13].

By this shift, a number of time frames is created and to each of them a set of requests Ri is assigned. Due
to the random delay the measure of interference I(Ri) is sufficiently balanced between those time frames. As
different hops that lie on the same path are assigned to different time frames, our single-hop algorithm can be
used to generate a schedule for each time frame.

forall i ∈ [m] do1

assign a delay 1 ≤ δi ≤ 2eI
log2 n

i. u. r.2

end3

forall 1 ≤ t ≤ 2eI
log2 n

+D do4
execute Algorithm 2 on all hops (i, j) with δi + j = t5

end6

Algorithm 3: Fixed path multi-hop scheduling

Theorem 9. The schedule generated by Algorithm 3 has length O(I +D log2 n) whp.

Proof. Let Iw(Rt) be the random variable of I caused by all requests assigned to time frame t. Let Pi,j denote
the i-th node on the j-th path. Let Xi,j,t be a 0/1 random variable such that Xi,j,t = 1 iff δi + j = t. Then we
have

Iw(Rt) =
∑
i,j

min
{

1, d(Pi,j−1, Pi,j)α

d(Pi,j−1, w)α

}
Xi,j,t .

As we have Pr [Xi,j,t = 1] = log2 n/2eI, we can bound the expectation by E [Iw(Rt)] ≤ log2 n/2e. For fixed t the
random variables Xi,j,t are negatively associated as defined by Dubhashi and Ranjan [6]. So a Chernoff bound is
applicable: for all k2 ≥ 1 it holds that

Pr
[
Iw(Ri) ≥ k2 log2 n

]
≤ 2−k2 log2 n ≤ 2−k2 logn = n−k2 .

Let Tt denote the schedule length that is used by Algorithm 2 to schedule Rt. We proved in Theorem 8 that for
all constants k1 and k2 there is a constant k0 such that

Pr
[
Tt ≥ k0k2 log2 n

∣∣∣∣∣ max
w∈V

Iw(Rt) ≤ k2 log2 n

]
≤ 1
nk1

.

Applying a union bound we get the probability that none of the 2eI/log2 n+D ≤ n random variables Tt exeeds
k0k2 log2 n. In total, Algorithm 3 generates a schedule length of O(I +D log2 n) whp.
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4.2 Finding Optimal Paths (Routing)
To find optimal paths an approach first used by Srinivasan and Teo for wired networks [20], solving an Integer
Linear Program (ILP) approximately by using relaxation and randomized rounding, can be adapted. Chafekar
et al. [4] also use it as a part of their CLM algorithm.

First, let us formalize the problem of finding paths such that max{I,D} is minimal as ILP. We introduce a
set of edges E ⊆ V × V which describes the set of links that may be used. Let furthermore Nin(v) resp. Nout(v)
denote the incoming resp. outgoing edges from v.

Minimize w subject to:

∀i ∈ [m]
∑

e∈Nout(si)

y(i, e)−
∑

e∈Nin(si)

y(i, e) = 1 (5a)

∀i ∈ [m], v ∈ V \{si, ti}
∑

e∈Nout(v)

y(i, e)−
∑

e∈Nin(v)

y(i, e) = 0 (5b)

∀i ∈ [m]
∑
e∈E

y(i, e) ≤ w (5c)

∀i ∈ [m], v ∈ V
∑

e′=(u′,v′)

y(i, e′) min
{

1, d(u
′, v′)α

d(u′, v)α

}
≤ w (5d)

∀i ∈ [m], e ∈ E y(i, e) ∈ {0, 1} (5e)

This ILP is designed to minimize w = max{I,D} as follows. Condition 5d ensures that I ≤ w whereas
Condition 5c ensures D ≤ w. By leaving out Condition 5e, this ILP can be relaxed to an LP which then describes
a multi-commodity flow problem.

This LP can be solved in polynomial time. Afterwards we can use the LP result to approximate a solution of
the ILP, by selecting paths of length at most 2w and applying the technique of randomized rounding [18]. In a
simple analysis we find out the following. If I∗ and D∗ are the values such that max{I,D} is minimal – which is
the optimal solution for the ILP – we calculate paths such that I = O(I∗ logn) whp and D ≤ 2D∗ this way.

4.3 Consequences for the CLM Problem
Let us combine our results to get an approximation algorithm for the CLM problem as stated by Chafekar et al.
[4]. Assume there is an optimal choice of paths, powers and a schedule such that the latency is T . Let the
measure of interference caused by these paths be denoted by I† and their dilation by D†. In Section 2 we showed
that it holds I† = O(log ∆ · logn · T ). Obviously D† = O(T ) holds, too.

If I∗ and D∗ are the values such that max{I,D} is minimal, our path selection algorithm chooses paths
such that I = O(I∗ logn) whp and D = O(D∗). A schedule by Algorithm 3 using these paths has length
O(I +D log2 n) = O(I∗ logn+D∗ log2 n) = O((I† +D†) log2 n) = O(log ∆ · log3 n · T ) whp. Thus we reached
an approximation factor of O(log ∆ · log3 n) whp. For instances restricted to the Euclidean plane, we even get an
approximation factor for O(log ∆ · log2 n) whp.
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